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Subnormal Distribution Derived From Evolving
Networks With Variable Elements

Minyu Feng, Hong Qu, Member, IEEE, Zhang Yi, Fellow, IEEE, and Jürgen Kurths

Abstract—During the past decades, power-law distributions
have played a significant role in analyzing the topology of
scale-free networks. However, in the observation of degree distri-
butions in practical networks and other nonuniform distributions
such as the wealth distribution, we discover that, there exists a
peak at the beginning of most real distributions, which cannot
be accurately described by a monotonic decreasing power-law
distribution. To better describe the real distributions, in this
paper, we propose a subnormal distribution derived from evolv-
ing networks with variable elements and study its statistical
properties for the first time. By utilizing this distribution, we
can precisely describe those distributions commonly existing in
the real world, e.g., distributions of degree in social networks
and personal wealth. Additionally, we fit connectivity in evolving
networks and the data observed in the real world by the proposed
subnormal distribution, resulting in a better performance of
fitness.

Index Terms—Degree distribution, evolving networks, Gibrat’s
law, power-law distribution, probability theory.

I. INTRODUCTION

AS well known, the power-law distribution is a nonuniform
distribution which appears that a majority of vertices

hold a low number of links while a few vertices have
many links for the networks. The history of the power-
law distribution starts from the Italian economist Pareto
in the 19th century, who first put the “20–80” rule for-
ward, i.e., 20% of a population possess 80% social welfare,
apparently following a power-law distribution. Bababási first
employed the power-law distribution to explain the degree
distribution of scale-free (SF) networks and made it gain
considerable fame. In 1999, he revolutionarily evolved the
network model into a scale-invariant state with the growing
and preferential attachment character, and revealed that the
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degree distribution of evolving networks follows a power-law
distribution [1].

This discovery soon drew great attentions from many
multidisciplinary researchers and brought a stirring of interests
in evolving networks. Many models based on evolving
networks have been proposed and well studied based on
Bababási’s work, such as fitness models [2], the nonlinear
accelerating networks [3], copying networks [4], weight-driven
local-world networks [5], optimal networks [6], etc. Apart
from these models, it is well known that most practical
networks such as Web networks [7], interaction networks [8],
sorting comparison network [9], social networks [10], [11],
etc., all follow a power-law distribution, which can be
described as the “rich-get-richer” or Matthew effect. The
power-law degree distribution therefore has shown significance
in the study of complex systems and is the foundation of
exploring the formation mechanism and organizational prin-
ciple of SF networks. Inspired by the SF networks along
with their properties such as its power-law distribution, the
discovery, analysis, and application of complex systems are
rapidly stepping into a new stage. Some of those outstand-
ing achievements from various fields in recent years are listed
below: analyzing the significance of a social community by
integrating the specific characteristics of social networks [12],
mining the social community structure by integrating center
locating and membership optimization [13], seeking the solu-
tion of social dilemmas on evolving random networks [14],
reviewing the co-evolutionary games [15] and computation,
proposing control protocols to estimate finite settling time for
complex systems [16], achieving the application of fast search
between any two vertices by utilizing the nonuniformity prop-
erty of SF network degree distribution [17] and studying the
decentralized adaptive pinning-control for cluster synchroniza-
tion of complex networks using a local adaptive strategy [18],
and solving the robust synchronization problem of fuzzy com-
plex dynamical networks [19], all of these work make the
complex network researches a “new science of networks.”
Specifically, among all the complex network researches, many
scientists have devoted to the study of degree distribution of
evolving networks. They proposed mean-field [20], master-
equation [21], and Markov-chain approach [22] to mathemat-
ically solve the degree distribution. Recently, the deviations
from power-law distributions were deeply investigated due to
the facts of proportional growth and preferential attachment
regarding practical networks [23].

In the past years, the power-law distribution has a domi-
nated position in the field of network science. However, some
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researchers recently started doubting whether it fits in all kinds
of networks. As one of them described in [24]: both real
networks as the connectivity server 2 and the m-varying model
are obviously different from the power-law distribution. And
we precisely notice that most practical SF networks and other
dynamical systems are in accord with the rule rich-get-richer,
however, many of them are out of accord with “poor-get-
poorer,” indicating that the distributions of these systems are
not simply power-law. This phenomenon appears widely in
complex networks and dynamical systems as well. For aerial
inbound logistical operation, there obviously exists a peak in
each distribution, the shape of the left part closes to a Poisson
distribution, and the right part has a heavy-tailed scaling statis-
tics for the empirical data [25]. Another evidence [26] also
indicates that many human activities including the interacting
communication present a different type of interevent time dis-
tribution, neither completely Poisson nor power-law, but a
bimodal combination of them. By investigating all these evi-
dence and facts, we find out that the mode does not occur in
the lowest value for SF networks and other dynamical systems.
As a consequence, the plot presents a peak. Here, we name
this phenomenon “subnormalization,” as the curve of corre-
sponding distribution seems to fall somewhere between the
power-law and normal distribution.

In order to explain the origin of this phenomenon and
find a better distribution function for the real world, we
originally put forward a subnormal distribution, concretely
introduce certain variable elements to the modeling process of
SF network and employ some common mathematical meth-
ods to solve the distribution function of degree. Through the
mathematical analysis, we find out this obtained subnormal
distribution processes the properties of both power-law and
log-normal distribution. By proposing this distribution, we
aim to simulate the distributions of both evolving models
and real networks. Therefore, in simulations, we compare the
similarity between the network distribution and the proposed
distribution. In addition, the distributions of degree in collab-
oration networks and personal wealth are also compared with
our distribution to show that it can be fit in with the prac-
tical ones. Finally, we try to find out the mechanism of SF
networks and discuss the potential value of subnormal phe-
nomenon and subnormal distribution in other fields such as
economics.

The organization of this paper is as follows. A detailed
presentation of the evolving networks with variable elements
is provided in Section II. The derivations of subnormal distri-
bution and its statistical properties are presented in Section III.
Simulations are carried out in Section IV to demonstrate the
fitness to other distributions. Finally, some discussions, the
conclusions, and outlooks are given in Section V.

II. EVOLVING NETWORKS WITH VARIABLE ELEMENTS

AND ITS DEGREE DISTRIBUTION

For the purpose of obtaining a better distribution than the
power-law, we first carry out an evolving network model with
variable elements based on an adapted SF network to study its
degree distribution. As a common sense, SF networks suggest

the growth and preferential attachment and follow a perfect
power-law distribution. Though the Barabási and Albert (BA)
network is closer to the real networks than other network
models, the construction process is still too ideal. For real
networks, it is impossible to introduce one vertex each time
and connect it to m existing vertices. Contrarily, there exists
lots of variable factors, such as the famous World Wide Web
that has a variable vertex growth rate and edge connection. To
reveal these influences on the degree distribution of networks,
we discuss the variable elements and show the construction
process of an SF model with them in this section.

A. Variable Elements

First, the variable elements in the process of construction
of an SF network are discussed.

The initial network is one of the most negligent issue which
in fact is also ignored by the BA SF network. The variable ele-
ments of the initial network are the number of initial vertices
and their connection rules. As we know, the number of initial
vertices affects the final degree distribution if the number is
very huge. However, the initial network are always very small
comparing to the final network. Advanced Research Projects
Agency Network, the origination of Internet, has only four
host computers connecting to each other. But now Internet
has billions of computer connections. Therefore, the number
of an initial network is required to be small enough that it
does not affect the final structure of the network. In addition,
the small initial networks are always highly gathered, e.g., the
beginning of a new journal network is cited by each other and
its average short path distance is low. Considering both small
and low distance characteristics, we suppose that a small-world
network proposed by Newman and Watts (NW) is appropriate
to describe the initial network [27].

The other variable element is the arrival rate or interval
time of vertices which is assumed as a constant by many
theoretical models. BA networks, for example, suppose that
one vertex is connected to the network each time. We sug-
gest that the vertices introduced to the network should follow
a certain rate, and that rate should vary in different period,
i.e., it is related to time. Specifically, the growth rate dur-
ing financial crises is lower than during boom period. Thus,
a nonhomogeneous Poisson process can perfectly express the
generation of vertices. In [28], we have proven that a nonho-
mogeneous Poisson process is irrelevant to the final degree
distribution. Specifically, the size of an evolving network
and its relative rate of growth are independent, which is
precisely consistent with the famous Gibrat’s law in eco-
nomics [29]. In other words, this law is also valid for evolving
networks.

The most significant variable in this paper is the connection
of new arrival vertices which directly affects the degree distri-
bution of the network. Accelerating growth network model [3]
first notes that the connection is varied, and its connection
follows a power-law distribution. However, for this kind of
network, a stationary distribution of the degree distribution
does not exist, which disagrees with the practical networks.
The stationary distribution for connections of a network is
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TABLE I
SUMMARY OF VARIABLES

one of the goals of this paper. We mainly consider two kinds
of distributions, uniform distributions and nonuniform dis-
tributions. The uniform distributions refer to those networks
whose connections of new arrival vertices are homogeneous,
hierarchical networks, e.g., [30]. On the contrary, the most
common connection rule follows a nonuniform distribution,
since each new vertex has its own fitness to the network, to
which the number of its connections to the existing vertices
in the networks relates. Practically speaking, in the network
of the research reference, once a high quality paper such as
Emergence of scaling in random networks by Barabási is pub-
lished, many related references will emerge in a short time,
yet a low quality paper will not be cited in a long time. The
universal expression for this connection is the Gaussian dis-
tribution, most connection numbers are a mean value, and the
extremely high and low numbers are rare which is much more
common in a steady network than the power-law distribu-
tion. Furthermore, the Gaussian distribution is just an ideal
situation. There are also many dilemmas by applying this dis-
tribution, e.g., the connection cannot be negative. There is
evidence that the most income is distributed log-normally,
which can be also interpreted as the new added connec-
tion, the income of evolving networks, is also distributed
log-normally [31]. Taking all factors into consideration, we
employ the log-normal distribution to simulate the connection
of evolving networks in this paper. The log-normal distribu-
tion has a significant influence on the degree distribution of
complex networks, which makes it free of time, but disobey
the traditional power-law distribution and break the rule of
poor-get-poorer.

There are other variable elements, such as the connection
rule and time, which are not discussed in this paper.

B. Evolving Network Model Based on Variable Elements

Next, we show a constructing process of evolving networks
with variable elements. Before the demonstration, we show a
table of variables that will be used in this and the next sections
in Table I.

The constructing process mainly includes initialization,
growth, connection, and termination.

Initialization, in this paper, is a process of a small NW
network. Assuming that the number of total vertices of the
initial network is n. Each of them links to k neighbors, and
has the probability p to link to others. Self-loops are avoided.

Growth is the key step of an evolving network, which con-
sists of the vertex growing rate and arrival vertex connection.
For each time t, we add λ(t) vertices. In the interval [t, t+�t],

the probability of number of new vertices is then

P{N(t + �t) − N(t) = k}
= [s(t + �t) − s(t)]k

k!
es(t+�t)−s(t), k = 0, 1, . . . (1)

where s(t) = ∫ t
0 λ(s)ds. Besides, for each vertex, we connect m

edges to the m different vertices already present in the network,
where m follows a log-normal distribution, i.e., the density of
m is given by:

f (m) =
⎧
⎨

⎩

1
m

√
2πσ

e
− (ln m−μ)2

2σ2 , x > 0

0, x ≤ 0.
(2)

Connection is simply linearly dependent on the degree of the
target vertex for the benefit of the following derivation, φ(i),
the probability of a connection to a vertex i, is denoted as

φ(i) = ki∑

j
kj

. (3)

Termination is controlled by time t, which directly affect the
scale of networks.

C. Degree Distribution of Evolving Networks

In order to understand the subnormalization phenomenon
based on the proposed model, we study the degree distribu-
tion as the main purpose of this paper. In this section, we
let t → ∞, then the small initial network has little effect on
the degree distribution. Therefore, in the derivation, the initial
network is ignored.

Given that the input rate of vertices is λ(t), each new vertex
links to m edges, N(t) is independent of connections m. Then
the expected value of the total degree is

∑

j

kj = 2E[m]E[N(t)] = 2μs(t). (4)

For a new vertex with m edges, one of which connects to
the existing vertex i, the corresponding probability is

P = (m
1

)
[φ(i)][1 − φ(i)]m−1 ≈ mki

2μs(t)
(5)

where φ(i) relates to (3).
Obviously, for one unit time from t to t + 1, the proba-

bility that the degree of vertex i increases one is approxi-
mately λ(t)[(mki)/(2μs(t))]. Then, we assume that the degree
distribution of the vertex i Pk(t + 1) follows a master
degree:

Pk(t + 1) ≈ λ(t)m(k − 1)

2μs(t)
Pk−1(t) +

(

1 − λ(t)mk

2μs(t)

)

Pt(k)

(6)

then, we have

Pk(t + 1) − Pk(t) = λ(t)m

2μs(t)

[
(k − 1)Pk−1(t) − kPt(k)

]
.

(7)
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Note that the differences of t and k are both 1, and based on
the definition of the partial derivative, we get

∂Pk(t)

∂t
= −λ(t)m

2μs(t)
· ∂kPk(t)

∂k
. (8)

Then we multiply both sides of (8) by k, and integrate over k,
that is

∫ ∞

0
kdk

∂Pk(t)

∂t
= −λ(t)m

2μs(t)

∫ ∞

0
kdk

∂kPk(t)

∂k
. (9)

Considering that the definition of the expectant degree ki

and employing the integration by part, we can deduce that

ki ≈
∫ ∞

0
kPk(t)dk

= −
{

[k2Pk(i, t)]∞0 −
∫ ∞

0
kPk(t)dk

}

= −
∫ ∞

0
kd[kPk(t)] = −

∫ ∞

0
kdk

∂[kPk(t)]

∂k
. (10)

Thus, (9) equivalently denotes as

∂ki

∂t
= λ(t)m

2μs(t)
· ki (11)

the general solution is ki = C[s(t)](m/2μ), where C is a
constant.

Combining with the boundary condition ki(s−1(i)) = m,
where s−1(i) is the inverse function of s(t), which indicates
the generation time of vertex i, then we have the solution

ki = m

[
s(t)

i

] m
2μ

. (12)

After ki is obtained, we next solve the degree distribution
of the evolving network. As previously stated, the random
variable m follows a log-normal distribution denoted as f (m),
while the vertex i is randomly selected from the vertices of
the evolving network. This means that i follows a uniform
distribution on [0, s(t)], denoted as f (i), and their joint dis-
tribution is denoted as f (i, m). Obviously, f (m) and f (i) are
the marginal probability densities for joint probability density
f (i, m), and the connection variable is mutually independent
of the selected vertex, which means that f (i, m) = f (i)f (m).

Then, based on the definition of the degree distribution
function, the joint degree distribution P{ki(t) < k} is derived as

P{ki(t) < k} =
∫∫

ki(t)<k

f (i, m)didm

=
∫∫

i>s(t)(m
k )

2μ
m

f (i)f (m)didm

=
∫ k

0

∫ s(t)

s(t)(m
k )

2μ
m

1

m
√

2πσ s(t)
e
− (ln m−μ)2

2σ2 didm

=
∫ k

0

1 − (m
k

) 2μ
m

m
√

2πσ
e
− (ln m−μ)2

2σ2 dm. (13)

For (13), to solve the derivative of the joint degree distri-
bution, by applying the Leibniz integral rule, we yield

p(k) = P′{ki(t) < k} = d

dk

∫ k

0

1 − (m
k

) 2μ
m

m
√

2πσ
e
− (ln m−μ)2

2σ2 dm

=
1 −

(
k
k

) 2μ
m

m
√

2πσ
e
− (ln m−μ)2

2σ2 · k′ −
1 −

(
1
k

) 2μ
m

m
√

2πσ
e
− (ln m−μ)2

2σ2 · 0′

+
∫ k

0

d

dk

1 − (m
k

) 2μ
m

m
√

2πσ
e
− (ln m−μ)2

2σ2 dm

=
∫ k

0

−m
2μ
m

m
√

2πσ
e
− (ln m−μ)2

2σ2
d

dk
k− 2μ

m dm

=
2μ
m

k
2μ
m +1

∫ k

0

m
2μ
m −1

√
2πσ

e
− (m−μ)2

2σ2 dm. (14)

So far, the degree distribution is obtained. Obviously,
if we let m in (14) be a constant, the distribution is
reduced to a power-law distribution. That is to say, the
power-law distribution is a specific case of this distribu-
tion and the internal mechanism for only those SF networks
with constant connections. However, for most networks
and other situations, variable elements always exist. So
the scope of applicability of the obtained distribution is
much broader. Therefore, we suggest that this distribution
is a very promising direction to study adaptive or evolving
networks.

More importantly, from the mathematical derivation, we
discover that the immanent factor of the subnormalization phe-
nomenon for real world is caused by evolving of network
degree distribution. In detail, degree distribution for evolv-
ing networks evolves into a 2-D joint random variable, which
consists of the selection of vertices following a uniform dis-
tribution and the connection of new vertices following a
log-normal distribution. The Matthew effect relates to the
boundary of the joint probability density function (PDF).
Consequently, the determinants of a degree distribution are the
selection rule (whether it is selected randomly or certainly),
the number of newly added links (whether they are con-
stants or variables following such as a log-normal distribution),
and the connection mechanism (e.g., the Matthew effect), all
directly affects the final degree distribution. We reveal this
direction is more significant than the traditional view that
the connection mechanism is the crucial factor for evolving
networks.

Additionally, a more universal form is required for a wider
application. We reveal that the exponential term of a degree
distribution for an evolving network (2 μ/m) is traced to that
one link has two degrees [see (4)]. If we break the limit
of the network, and regard the value of m as the increment
or decrement of income in economics. Then, one income
can be spent on different places, which means the exponen-
tial term cannot only be (2 μ/m). In that sense, by setting
the exponential term as a parameter γ , we then figure out
the general form of this kind of distribution in the next
section.
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III. SUBNORMAL DISTRIBUTIONS FOR EVOLVING

NETWORKS AND THEIR STATISTICAL PROPERTIES

For the purpose of broadening the application field such as
fitting the personal wealth distribution, the general rigorous
definition of our proposed distribution and its statistical prop-
erties are required. Hence, in this section, we mainly focus on
the definition of the subnormal distribution derived from an
evolving network and displaying its statistical properties.

A. Definition and Derivation of Subnormal Distribution

For (13) and (14), theoretically, consider that the connection
variable m as a pure log-normal distribution with the param-
eters λ and σ 2, while i as a uniform distribution, then the
variable k referred to (12) is defined as a subnormal distribu-
tion in this paper. Above all, we present the detail definition
of a general subnormal distribution by its PDF and cumulative
distribution function (CDF) in mathematics.

Definition 1: A continuous random variable X is said to
have a subnormal distribution with the parameter γ > 0, if its
PDF is given by

f (x) =
⎧
⎨

⎩

γ

xγ+1

∫ x
0

tγ−1√
2πσ

e
− (ln t−μ)2

2σ2 dt, x > 0

0, x ≤ 0
(15)

or, equivalently, if its CDF is given by

F(x) =
⎧
⎨

⎩

∫ x
0

1−( t
x )γ√

2πσ t
e
− (ln t−μ)2

2σ2 dt, x > 0

0, x ≤ 0
(16)

where t is a log-normal random variable with the parameters
λ and σ 2.

At the first place, we prove that the function f (x) indeed is
a PDF.

Theorem 1: f (x) in (15) is a PDF having the properties that
f (x) ≥ 0 and

∫ +∞
−∞ f (x) = 1.

Proof: Apparently, for x < 0, f (x) = 0, otherwise, f (x) > 0.
Overall, f (x) ≥ 0.

For all t, having 0 < t < x < +∞, we can exchange the
order of integral, that is

∫ +∞

−∞
f (x) =

∫ +∞

0

∫ x

0

γ

xγ+1 tγ−1

√
2πσ

e
− (ln t−μ)2

2σ2 dtdx

=
∫ +∞

0

∫ +∞

t

γ

xγ+1 tγ−1

√
2πσ

e
− (ln t−μ)2

2σ2 dxdt

=
∫ +∞

0

[

− 1

γ
x−γ

]+∞

t

tγ−1

√
2πσ

e
− (ln t−μ)2

2σ2 dt

=
∫ +∞

0

1

t
√

2πσ
e
− (ln t−μ)2

2σ2 dt (17)

let y = [(ln t − μ)/σ ], that is dy = (1/σ t)dt, then by
substitution y and dy into (17), we have

∫ +∞

−∞
f (x) =

∫ +∞

−∞
1√
2π

e− y2

2 dy = 1. (18)

The results follow.
As stated above, a subnormal variable is a joint probability

density of a uniform variable and a log-normal distribution,
thus we have Theorem 2.

Theorem 2: Given random variables X and Y are mutually
independent, and X follows a uniform distribution on [0, a], Y
follows a log-normal distribution with the parameters μ and
σ , if:

Z = Y
( a

X

)γ

(19)

then, the random variable Z follows a subnormal distribution
with the parameter γ .

Proof: For z ≤ 0

FZ(z) = P
{

Y
( a

X

)γ ≤ z
}

= 0. (20)

Otherwise, for z > 0, since X and Y are mutually inde-
pendent, the joint probability density fZ(z) is the product of
marginal probability densities fX(x) and fY(y), then

FZ(z) = P
{

Y
( a

X

)γ ≤ z
}

=
∫∫

y( a
x )

γ ≤z

fZ(z)dxdy

=
∫∫

y( a
x )

γ ≤z

f (x, y)dxdy =
∫∫

x>a
(

y
z

)γ

fX(x)fY(y)dxdy

=
∫ z

0

∫ a

a
(

y
z

)γ

1√
2πσax

e
− (ln y−μ)2

2σ2 dxdy

=
∫ z

0

1 −
(

x
z

)γ

√
2πσx

e
− (ln x−μ)2

2σ2 dx. (21)

Consider both (20) and (21), we have

FZ(z) =
⎧
⎨

⎩

∫ z
0

1−
(

x
z

)γ

√
2πσx

e
− (ln x−μ)2

2σ2 dz, z > 0

0, z ≤ 0
(22)

obviously, FZ(z) follows the CDF of a subnormal distribution.
Furthermore

fZ(z) = F′
Z(z) =

⎧
⎨

⎩

γ

zγ+1

∫ z
0

xγ−1√
2πσ

e
− (ln x−μ)2

2σ2 dx, z > 0

0, z ≤ 0
(23)

indicates the PDF of a subnormal distribution.
In summary, the results follow.
Additionally, the integration of Definition 1 is difficult to

calculate in practical situation. To address this issue, we can
also use the error function also called Gaussian error function
to denote (15) and (16) in Definition 1, which is presented in
Theorem 3.

Theorem 3: The PDF of a subnormal distribution is
given by

f (x) =
{

γ

2xγ+1 eμ+ 1
2 γ 2σ 2

[
1 + erf

(
ln x−μ−γ σ 2√

2σ

)]
, x > 0

0, x ≤ 0
(24)

and its CDF is given by

F(x) =
{

1
2 {erf( ln x−μ√

2σ
) − erf[ ln x−μ−(γ+1)σ 2√

2σ
]}, x > 0

0, x ≤ 0
(25)
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where t is a log-normal random variable with the parameters
λ and σ 2, and erf(x) is the Gaussian error function.

Proof: Consider Definition 1, for x ≤ 0, both f (x) and F(x)
are equal to 0.

Otherwise, for x > 0, we set y =
[(ln t − μ − γ σ 2)/(

√
2σ)], and dy = [1/(

√
2σ t)]dt, noticing

the integral range, then PDF can be expressed as

f (x) = γ

xγ+1

∫ ln x−μ−γ σ2√
2σ

−∞
e
γ
(√

2σy+γ σ 2+μ
)

√
πσ

e− (
√

2y+γ σ)
2

2 dy

= γ

xγ+1
eμ+ 1

2 γ 2σ 2
∫ ln x−μ−γ σ2√

2σ

−∞
1√
π

e−y2
dy

= γ

xγ+1
eμ+ 1

2 γ 2σ 2

⎛

⎝1 +
∫ ln x−μ−γ σ2√

2σ

0

1√
π

e−y2
dy

⎞

⎠

= γ

2xγ+1
eμ+ 1

2 γ 2σ 2
[

1 + erf(
ln x − μ − γ σ 2

√
2σ

)

]

(26)

where erf(x) = (2/
√

π)
∫ x

0 e−t2 dt.
Applying the same method, for x > 0, we solve CDF

F(x) = 1

2

{

erf

(
ln x − μ√

2σ

)

− erf

[
ln x − μ − (γ + 1)σ 2

√
2σ

]}

.

(27)

The results follow.
Remark 1: The PDF can also be expressed as the comple-

mentary error function and standard normal CDF

f (x) = γ

xγ+1
eμ+ 1

2 γ 2σ 2
∫ +∞

μ+γ σ2−ln x√
2σ

1√
π

e−y2
dy

= γ

2xγ+1
eμ+ 1

2 γ 2σ 2
erfc

(
μ + γ σ 2 − ln x√

2σ

)

= γ

xγ+1
eμ+ 1

2 γ 2σ 2
�

(
ln x − μ − γ σ 2

σ

)

(28)

where erfc(x) = (2/
√

π)
∫ ∞

x e−t2 dt, and �(x) =
(1/

√
2π)

∫ x
−∞ e−(t2/2)dt.

Analogously, CDF can also be denoted as

F(x) = 1

2

{

erfc

(
μ − ln x√

2σ

)

− erfc

[
μ + (γ + 1)σ 2 − ln x√

2σ

]}

= �

(
ln x − μ

σ

)

− �

(
ln x − μ − (γ + 1)σ 2

σ

)

.

(29)

B. Some Statistical Properties of Subnormal Distribution

In practical situations, a distribution function is of the
nonessential; instead some special properties are more useful.
In this section, we provide some common statistical proper-
ties in numerals such as the expected value, variance, etc., and
display their solving processes. The default of γ is nonzero in
all derivations.

1) Expectation Value: In probability theory, the expectation
value of a random variable is intuitively the long-run average
value of repetitions of the experiment it represents. It is the
weighted average of all possible values. Practically, if Z =
G(x, y) is a continuous random variable having a joint PDF
f (x, y), and

∫ +∞
−∞

∫ +∞
−∞ |G(x, y)|f (x, y)dxdy < +∞ then the

expectation value of Z is given by

E(Z) =
∫ +∞

−∞

∫ +∞

−∞
G(x, y)f (x, y)dxdy. (30)

Then, we have the following theorem.
Theorem 4: The expectation value of a general subnormal

variable with the parameter γ �= 1 is (γ /γ − 1)eμ+(σ 2/2).
Proof: A subnormal variable Z is jointed by mutually inde-

pendent random variables, a uniform variable X distributed on
[0, a] and a log-normal variable Y distributed on (0,+∞),
according to Theorem 2, and can be expressed as

z = y(
a

x
)

1
γ . (31)

For γ �= 1, we have

E(Z) =
∫ +∞

0

∫ a

0
y
(a

x

) 1
γ

f (x, y)dxdy

=
∫ +∞

0

∫ a

0
y
(a

x

) 1
γ

f (x)f (y)dxdy

=
∫ +∞

0

∫ a

0
y
(a

x

) 1
γ 1

ay
√

2πσ
e
− (ln y−μ)2

2σ2 dxdy

=
[

γ

γ − 1
x1− 1

γ

]a

0
·
∫ +∞

0

a
1
γ

−1

√
2πσ

e
− (ln y−μ)2

2σ2 dy (32)

let t = [(ln y − μ)/σ ], then

E(Z) = γ

γ − 1

∫ +∞

−∞
1√
2π

e− t2
2 +σy+μdt = γ

γ − 1
eμ+ σ2

2 .

(33)

The result follows.
2) Variance: Additionally, we employ the variance to dis-

play the dispersion degree measuring how far a set of numbers
is spread out. Specifically, for a variable X with the expecta-
tion value E(X), then variance is given by Var(X) = E([X −
E(X)]2).

Then, we calculate the variance of a subnormal distribution.
Theorem 5: The variance of a general subnormal vari-

able with the parameter γ �= 1 and γ �= 2 is
e2μ+σ 2

[(γ /γ − 2)eσ 2 − (γ 2/[(γ − 1)2])].
Proof: The variance of a subnormal variable Z can be

expressed as

Var(Z) = E(Z2) − [E(Z)]2 (34)

where, by utilizing (31)

E(Z2) =
∫ +∞

0

∫ a

0
y2(

a

x
)

2
γ

1

ay
√

2πσ
e
− (ln y−μ)2

2σ2 dxdy

= γ

γ − 2

[
x1− 2

γ

]a

0
·
∫ +∞

0

ya
2
γ

−1

√
2πσ

e
− (ln y−μ)2

2σ2 dy (35)
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here, we render t = [(ln y − μ)/σ ]

E(Z2) = γ

γ − 2

∫ +∞

−∞
1√
2π

e− t2
2 +2σ t+2μdt

= γ

γ − 2
e2μ+2σ 2

∫ +∞

−∞
1√
2π

e− (t−2σ)2
2 dt

= γ

γ − 2
e2μ+2σ 2

(36)

and note that Theorem 4

[E(Z)]2 = γ 2

(γ − 1)2
e2μ+σ 2

. (37)

Then, (36) and (37) are substituted into (34), we have

Var(Z) = e2μ+σ 2
[

γ

γ − 2
eσ 2 − γ 2

(γ − 1)2

]

. (38)

The result follows.
Remark 2: Apparently, if γ = 1 or γ = 2, the nonexistence

of the variance follows. Furthermore, the variance should be
non-negative, that is

e2μ+σ 2
[

γ

γ − 2
eσ 2 − γ 2

(γ − 1)2

]

≥ 0. (39)

For γ �= 1 or 2

eσ ≥ γ (γ − 2)

(γ − 1)2
. (40)

Analogously

σ ≥ ln
γ (γ − 2)

(γ − 1)2
. (41)

Finally, we conclude that only if γ �= 1 or 2 and σ ≥
ln([γ (γ − 2)]/[(γ − 1)2]), the variance of the subnormal dis-
tribution will exist.

Remark 3: From Theorems 4 and 5, we obtain the rela-
tionship between the parameters μ, σ , and γ and the expec-
tation value E(X) and the variance Var(X). Specifically, μ is
denoted as

μ = ln

[
γ

γ − 1
E(X)

]

− 1

2
ln

{
γ (γ − 2)

(γ − 1)2

(

1 + Var(X)

[E(X)]2

)}

= ln

[
γ

γ − 1
E(X)

]

− 1

2
σ 2 (42)

and σ is

σ =
√

ln{γ (γ − 2)

(γ − 1)2
+ γ (γ − 2)

(γ − 1)2
· Var(X)

[E(X)]2
}. (43)

From the derivation, we can see that the variance is possibly
nonexistent. And if γ → ∞, the variance is numerically equal
to e2μ+σ 2

[eσ 2 − 1], which is equivalent to the log-normal dis-
tribution. And we can learn from (42) and (43) that the values
of both μ and σ are relatively low directing the variance to
a low value, which agrees with the assumption in the process
of derivation of a subnormal distribution.

3) Other Statistical Properties: For any real number k, the
kth moment variable X is given by E(Xk), thus we have the
following theorem.

Theorem 6: The kth moment of a general subnormal vari-
able with the parameter γ �= k is [γ /(γ − k)]ekμ+(1/2)k2σ 2

.
Proof: The kth moment of a general subnormal variable can

be expressed as

E(Zk) =
∫ +∞

0

∫ a

0
yk

(a

x

) k
γ 1

ay
√

2πσ
e
− (ln y−μ)2

2σ2 dxdy

= γ

γ − k

[
x1− k

γ

]a

0
·
∫ +∞

0

yk−1a
k
γ

−1

√
2πσ

e
− (ln y−μ)2

2σ2 dy (44)

let t = [(ln y − μ)/σ ], then

E(Zk) = γ

γ − k

∫ +∞

−∞
1√
2π

e− t2
2 +kσ t+kμdt

= γ

γ − k
ekμ+ 1

2 k2σ 2
∫ +∞

−∞
1√
2π

e− (t−kσ)2

2 dt

= γ

γ − k
ekμ+ 1

2 k2σ 2
. (45)

The result follows.
The arithmetic coefficient of variation CV(X) is the ratio

[SD(X)/E(X)], where SD(X) = √
Var(X).

Theorem 7: The CV(X) of a general subnormal vari-
able with the parameter γ �= 1 and γ �= 2 is
[γ /(γ − k)]ekμ+(1/2k2)σ 2

.
Proof: The CV(X) of a general subnormal variable can be

expressed as

CV(X) = SD(X)

E(X)
=

√

e2μ+σ 2
[

γ
γ−2 eσ 2 − γ 2

(γ−1)2

]

γ
γ−1 eμ+ σ2

2

=
√

(r − 1)2

r(r − 2)
eσ 2 − 1. (46)

The partial expectation (PE) value of a random variable
X with respect to a threshold ξ is denoted as PE(ξ) =∫ ∞
ξ

xf (x)dx.
Theorem 8: The PE value of variation PE(X) of a gen-

eral subnormal variable with the parameter γ �= 1 is
[γ /(γ − 1)]eμ+[σ 2/2]�(σ − [(ln ξ − μ)/σ ]).

Proof: The PE(X) of a general subnormal variable can be
expressed as

PE(X) =
∫ ∞

ξ

xf (x)dx

=
∫ +∞

ξ

∫ x

0

γ
xγ tγ−1

√
2πσ

e
− (ln t−μ)2

2σ2 dtdx

= γ

γ − 1

∫ +∞

ξ

1√
2πσ

e
− (ln t−μ)2

2σ2 dt (47)

let y = [(ln t − μ)/σ ] − σ , we have

PE(X) = γ

γ − 1

∫ +∞
ln ξ−μ

σ
−σ

1√
2π

e− y2

2 +μ+ σ2
2 dy

= γ

γ − 1
eμ+ σ2

2

∫ +∞
ln ξ−μ

σ
−σ

1√
2π

e− y2

2 dy

= γ

γ − 1
eμ+ σ2

2 �

(

σ − ln ξ − μ

σ

)

(48)

where � is the standard normal CDF.
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(a) (b) (c)

Fig. 1. Influence of different values of parameters on the curve of the subnormal distribution. The constant arguments are set as (a) μ = 2 and σ = 1,
(b) γ = 2 and σ = 1, and (c) γ = 2 and μ = 1.

The result follows.
In addition, many other statistical properties, such as the

characteristic function E[eitX], the moment generating function
E[etX] (which are easily proved divergent), mode, peak (which
are without analytic solutions), etc., are omitted in this paper.

IV. SIMULATION AND ANALYSIS

In this section, we first provide theoretical simulations to
analyze the influence of the different parameters γ , μ, and
σ of Definition 1 on the curve of the subnormal distribution.
Then, we carry out some simulations of fitting the subnormal
distributions to the degree distributions of evolving network
model. In the end, to fit those distributions in real world by
our proposed distribution, we display the fitting simulations in
scientific collaboration network as one kind of social networks
and personal wealth as economic activities.

A. Parameter Analysis

To explore the influence of the parameters γ , μ, and σ on
the curve of the subnormal distribution of (15), we let two of
them be constants, and the other one deals with three distinct
values. Then the corresponding plots are drawn. The results
are illustrated in Fig. 1.

For the parameter γ , as shown in Fig. 1(a), the higher
value makes the curve taller and thinner, which means the
peak grows higher. However, a change from 2 to 10 is much
more obvious than from 10 to 40. And the influence of γ

on the mode (x of the peak) is inconspicuous. As a result, γ

speeds up ascent rate before mode, and descent rate after the
mode. This character is very similar to the exponent index of
the power-law distribution denoting the slope in logarithmic
coordinates.

We can see from Fig. 1(b), with the rise of the parameter
μ, the curve becomes shorter and fatter. The change is very
apparent, even μ rarely increases by 1. That is to say, μ is
positively related to the mode, but has a visibly negative effect
on the peak.

As the last parameter σ illustrated in Fig. 1(c), the higher
value makes the curve taller and thinner. For the peak, the
influence of σ is similar to γ . In other words, with the increase
of σ , the peak rises, but very slow. Different from γ , σ is
negatively related to the mode in the exponential, the higher
value makes the mode much lower. Fig. 1(c) displays that the
corresponding x move leftward.

In summary, γ and σ positively affects the peak of a sub-
normal distribution indicating the height of the curve, while μ

does it negatively. Besides, μ has a positive influence on the
mode indicating the location of the peak. Contrarily, σ has a
negative influence, and γ has an inapparent influence on the
mode. Furthermore, γ and σ have a positive relationship with
the rate of rise and fall, the latter is more severe. Otherwise,
μ has an obviously inverse relationship. With these relation-
ships, we can determine the approximate curve shape of the
required subnormal distribution.

B. Fitting Subnormal Distribution to Proposed Model

To fit these distributions, the subnormal distribution is
required to be discretized, in other words, x can only be inte-
gers. To clearly compare the fitness of two distributions, we
apply the Pearson product-moment correlation coefficient as
the index. Specifically, for vectors of subnormal variables X
and other variables, such as the degree distribution of evolving
network Y , the correlation coefficient is denoted as

ρX,Y = E[(X − E(X))(Y − E(Y))]

SD(X)SD(Y)
. (49)

1) Fitting the Degree Distribution to Evolving Network:
The modeling of the evolving network is referred to in
Section II-B.

In the initialization, we build a NW small-world network
with 20 vertices as the initial network, each connects to two
neighbors and has a 50% chance to add a link to others. In
the evolving process, for simplicity, we use a homogeneous
Poisson process instead of a nonhomogeneous one since the
growing is essentially independent of the degree distribution.

1) Set the values of input rate λ and termination time t.
2) Generate exponential distribution random values with λ,

denoted as ti, i = {1, 2, 3, . . .}.
3) If the cumulative time Ti ≤ t, let Ti = Ti + ti, else stop

and output the temporal series.
Then we have the temporal series of arrival vertices. In the
process of connection, we employ the lognrnd function in
MATLAB to produce the number of connections. The result
is rounded by round function, and the roulette algorithm is
applied to simulate (3). As a result, a relatively sparse sam-
ple of a evolving network produced by λ = 1, t = 100, and
μ = 1, σ = 1 of log-normal is demonstrated in Fig. 4.
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(a) (b) (c)

Fig. 2. Comparison of the degree distributions of evolving networks marked with red circles and their corresponding subnormal distributions marked with
blue circles, all have that σ = 1 and γ = 2, but different μs. (a) μ = 1. (b) μ = 2. (c) μ = 3.

(a) (b) (c)

Fig. 3. Comparison of the degree distributions of evolving networks marked by red circles and their corresponding subnormal distributions marked by blue
circles, all have that μ = 0 and γ = 2, but different σ s. (a) σ = 1. (b) σ = 2. (c) σ = 3.

Fig. 4. Illustration of an evolving network produced by λ = 1, t = 100, and
μ = 1, σ = 1.

After an evolving network is obtained, we utilize the associ-
ation matrix to record its degrees, and plot the corresponding
degree distribution. Three evolving networks with different μs
and σ s are recorded. Then, with the same parameters, we also
use Definition 1 to draw the distributions of the discrete sub-
normal variables in the same coordinate. The results are shown
in Figs. 2 and 3. Since the distributions are obtained from
networks, we let γ ≈ 2.

In Fig. 2, different μs of the degree distributions and sub-
normal distributions are compared. To reduce the interruption
of σ , we let it be the smallest integer 1. Since the tails of both
distributions are extremely close, we take 75, 100, and 200 val-
ues of x for μ = 1, 2, and 3 for clear illustration, respectively.
By (49), the similarity of both distributions is calculated and
listed in Table II(first row). From the results, we see that the
correlation coefficient of two distributions are very high, all

TABLE II
CORRELATION COEFFICIENT OF THE DEGREE DISTRIBUTIONS OF

EVOLVING NETWORKS AND THEIR CORRESPONDING

SUBNORMAL DISTRIBUTIONS

above 95%, implying that the degree distribution of evolving
networks is highly similar to the subnormal distribution with
the same parameters. And we also observe that the higher μ

the lower the correlation coefficient, the deviation degree of
both distributions becomes more obvious.

In Fig. 3, different σ s of the degree distributions and
the subnormal distributions are compared. To reduce the
interruption of μ, we let it be the possibly smallest integer
0. For better display, 75, values of x for σ = 1, 2, and 3
are illustrated. By (49), the similarity of both distributions is
calculated and listed in Table II(second row). The results also
show a good evaluation of similarity of both distributions, all
above 90%. However, the higher σ will raise the variance of
connections, and consequently, the deviation degree is more
apparent, leading to a lower correlation coefficient.

Above all, the subnormal distribution well fits the degree
distribution of evolving networks, and the result is better for
relatively low values of μ and σ .

C. Fitting Distribution of the Real World

Furthermore, to show the validity of the fitness of our
proposed distribution in real world, we carry out the fitting
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(a) (b) (c)

Fig. 5. Comparison of the degree distributions of three different collaboration networks marked by red circles and their corresponding subnormal distributions
marked by blue circles and power-law distributions marked by black circles. Degree simulation for (a) Ca-AstroPh, (b) Ca-CondMat, and (c) Ca-HepPh.

simulations for those distributions of real networks in this
section. They, respectively, aim at the scientific collaboration
network degree distributions and personal wealth distributions.

1) Fitting Scientific Collaboration Network Degree
Distributions: First, as one of the social networks for
scientists, a collaboration network of arXiv astro physics
(Ca-AstroPh) from the e-print arXiv which covers scientific
collaborations between authors of papers submitted to astro
physics category is fitted to the subnormal distribution [32].
And we also select another collaboration networks dealing
with condense matter (Ca-CondMat) from the e-print arXiv
and covers scientific collaborations between authors papers
submitted to condense matter category to validate the fitness
of our proposed distribution [32]. Additionally, as an alterna-
tive kind of the social networks for scientists, an arXiv high
energy physics paper citation network (Ca-HepPh) from the
e-print arXiv and covers all the citations is also simulated by
our distribution [33], [34].

For the collaboration network of Ca-AstroPh and Ca-
CondMat, if an author i co-authored a paper with author j,
the network contains an undirected edge from i to j. The data
of Ca-AstroPh covers papers in the period from January 1993
to April 2003. It begins within a few months of the inception
of the arXiv, and thus represents essentially the complete his-
tory of its ASTRO-PH section. The number of nodes is 18 772,
and of edges is 396 160. And The data of Ca-CondMat cov-
ers papers in the period from January 1993 to April 2003. It
begins within a few months of the inception of the arXiv, and
thus represents essentially the complete history of its COND-
MAT section. The number of nodes is 23 133, and of edges
is 186 936. For the citation network of Ca-HepPh, if a paper i
cites paper j, the graph contains a directed edge from i to j. The
data of Ca-HepPh covers 34 546 papers with 421 578 edges in
the period from January 1993 to April 2003. It begins within
a few months of the inception of the arXiv, and thus repre-
sents essentially the complete history of its HEP-PH section.
From these networks, we can obtain their related associa-
tion matrices, and calculate the degree distributions, shown
in Fig. 5(a)–(c) as red scatters, respectively.

From the data, we can estimate the expectation value of
degree of collaboration network of Ca-AstroPh, which is
E(AstroPh) = 21.1038 ≈ 21. Assuming that one subnor-
mal distribution fits this network degree, as we know, the γ

for networks approximatively equals to 2, then by employing
Theorem 4, the relationship of the parameters μ and σ can be
denoted as μ + [(σ 2)/2] = [(log [E(AstroPh)])/2] ≈ 1.522.
Thus, we let μ = 1.15 and σ = 0.86. In the same way,
for collaboration network of Ca-CondMat, its expectation is
E(CondMat) = 8.0809 ≈ 8, so we let μ = 0.85 and
σ = 0.62. And for the last citation network Ca-HepPh, its
expectation is E(CondMat) = 19.7377 ≈ 20, similarly we let
μ = 1.05 and σ = 0.94. The illustrations of blue scatters of
simulative subnormal distributions are, respectively, shown in
Fig. 5(a)–(c).

In previous studies, the power-law distribution was most
mostly utilized to describe social networks, similarly we also
introduce a power-law distribution for comparison which is
denoted as f (x) = γ mγ x−γ−1 (x > μ), where γ = 2. For
Ca-AstroPh, the expectation value of power-law distribution,
if the distribution fits the network degree, can be denoted
as 2m = E(AstroPh). Then, to simulate the collaboration
network, we set the parameter m ≈ 11. Equivalently, for Ca-
CondMat, we let the parameter m ≈ 5, and for Ca-HepPh,
we let m ≈ 10. Their black scatters as simulative power-law
distributions are, respectively, displayed in Fig. 5(a)–(c).

Again, (49) is employed to calculate the correspondence of
the subnormal, power-law distribution with the degree distri-
bution of the collaboration network. The first 200 values are
taken into calculation, but for a clear displaying, only the first
45 values are shown in Fig. 5. For Ca-AstroPh, the corre-
lation coefficient with the subnormal distribution is 98.68%,
while that with the power-law distribution is 76.31% only. For
the benefit of power-law distribution, we also calculate the
correspondence starting from the first value 11 of power-law
distribution with partial distributions of collaboration network
degree, the results are 97.45% for the subnormal distribution
and 94.45% for the power-law distribution. For Ca-CondMat,
the subnormal distribution is 98.83%, while the power-law
distribution is 58.03% only, 99.42% and 94.58% if only the
values beyond 5 are compared. And for Ca-HepPh, the subnor-
mal distribution is 98.59%, while the power-law distribution
is 75.93% only, 96.77% and 95.20% if only the values beyond
10 are compared. All the results are listed in Table III clearly.

Obviously, the subnormal distribution fits the collabora-
tion network degree distribution much better in tendency and
correlation than the power-law distribution, whether in full



2566 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 9, SEPTEMBER 2018

TABLE III
CORRELATION COEFFICIENT OF THE DEGREE DISTRIBUTIONS OF

SCIENTIFIC COLLABORATION NETWORKS WITH THEIR

CORRESPONDING SUBNORMAL DISTRIBUTIONS

AND POWER-LAW DISTRIBUTIONS

or partial plots. Actually, the power-law distribution only
describes the tails, i.e., those authors having many collab-
orations, but ignores those ones having a few only. In the
real world, from our perspective, the lower values that cannot
be perfectly described by the power-law distributions require
more attention, since they represent the majority and bring
serious influence on the tendency as well as the statistical
properties of the whole distribution. In particular, the high-
est collaboration number denoting the peak of the plot in the
collaboration network, can be described as the most prob-
able value of authors, and should be the priority research
objects. Additionally, the power-law is monotonously decreas-
ing, but social networks usually present a peak, indicating that
the poorest are not the most, and the subnormal distribution
perfectly fits that character.

2) Fitting the Personal Wealth Distribution: As mentioned
above, the subnormal can also describe the inequality distri-
bution in economy. Therefore, we try to fit the subnormal
distributions to personal wealth distributions from differ-
ent time periods and find that the results are irrelevant
to time.

As we know, personal wealth distribution is not easy to
measure, since people avoid reporting their total wealth rou-
tinely. And the statistical data are often quartered or more,
which makes it difficult to seek for precise values of each
wealth level. But when a person dies, all assets must be
reported for the purpose of inheritance tax. Using these data
and an adjustment procedure, the British tax agency, the Inland
Revenue, reconstructed wealth distribution of the whole U.K.
population. We mainly employ two data sets of total gross
capital value obtained from their Web site during the differ-
ent periods to verify the fitness of our distribution, one is
from 2008 to 2010 (U.K.1) [35], the other is from 2011 to
2013 (U.K.2) [36]. These data divide the people into eight
levels of net estate: 1) £0 to £50 000; 2) £50 000 to £100 000;
3) £100 000 to £200 000; 4) £200 000 to £300 000; 5) £300 000
to £500 000; 6) £500 000 to £1 000 000; 7) £1 000 000 to
£2 000 000; and 8) over £2 000 000, we average the level as
{0.25, 0.75, 1.5, 2.5, 4, 7.5, 10, 25}∗105. For the data U.K.1,
the numbers of people for each level are {3053, 2382, 4207,
2515, 1682, 889, 224, 98}, For the alternative date U.K.2, the
numbers for each level are {3157, 2059, 3845, 2573, 1984,
1039, 289, 122}. Refer to the law of large numbers, we con-
sider their frequencies as their probabilities, thus we can get

(a)

(b)

Fig. 6. Comparison of the personal wealth distribution marked by red cir-
cles and its corresponding subnormal distributions marked by blue triangles,
power-law distribution marked by black squares. (a) U.K. Personal Wealth
Statistics: 2008–2010. (b) U.K. Personal Wealth Statistics: 2011–2013.

the personal wealth distribution of U.K. during the two peri-
ods. Since the scatters are sparse, for clear illustration, we
connect them as a plot [see the red plots in Fig. 6(a) and (b)].

As the data are sparse and too poor to calculate the expec-
tation value, the previous method is not be able to evaluate
the parameters of the fitting subnormal distribution. Thus, we
test lots of parameters to present better results, one of them
for U.K.1 is γ = 1.9, μ = 0.6, and σ = 0.5, and that for
U.K.2 is γ = 1.9, μ = 0.55, and σ = 0.55 (see the blue plots
of subnormal distributions in Fig. 6(a) and (b)].

For the power-law distribution, except the expectation value,
we can also calculate the slope of the date in logarithm to
obtain γ , and further m. The result for U.K.1 is that γ = 0.3
and m ≈ 0.34, for U.K.2 is γ = 0.3 and m ≈ 0.35. Then,
the power-law distributions in black plots are illustrated in
Fig. 6(a) and (b).

By (49), for U.K.1, the result of correlation coefficient of
subnormal distribution with wealth distribution is 80.53%,
while the power-law distribution is 68.35% only, 99.24% and
97.55% if only the values beyond 2.5 are compared. And for
U.K.2, the result of subnormal distribution is 80.53%, while
power-law is 68.35%, 99.24%, and 97.85% if only the val-
ues beyond 2.5 are compared. Once again, we display that the
power-law only fits the tail, but the subnormal approximately
fits the whole plot.

From Fig. 6, we can see that the U.K. wealth distributions
during two different periods have no significant difference,
the reason is that U.K. is a developed country, which means
their personal distribution is stationary and free of time, and
this perfectly follows our theory that the subnormal distribu-
tion is irrelevant to time once time is large enough. Besides,



FENG et al.: SUBNORMAL DISTRIBUTION DERIVED FROM EVOLVING NETWORKS WITH VARIABLE ELEMENTS 2567

for the wealth, the part before peak of the distribution rep-
resents the lower-middle-classes, which play significant role
in economic activities as well as stabilities, and should not
be ignored as the power-law does. They hold a high percent
in number of people, e.g., 64.07% lower-middle-classes for
U.K.1 and 60.13% for U.K.2, and have a strong impact on
the tendency of distribution. Therefore, as one of the best fit,
the subnormal distribution can help to describe the personal
wealth distribution and study its potential economic value.

It’s worth noting that at the first three points make the ten-
dency of plot decline, the underlying reason is the way they
count. In detail, negative asset owners are included in 0 to 0.5
making the first positive value higher, but for both subnormal
and power-law distribution negative values are ignored.

V. CONCLUSION

In this paper, we have presented a brand new distribution
called subnormal distribution to simulate the distributions of
the degree of evolving networks (such as SF networks), real
networks (such as social networks and economic distribution)
and other uneven distributions, which may help researchers
study the properties of all these distributions. Essentially, from
the derivation, we discover that the degree distribution is a
2-D joint probability density consisting of the selection of ver-
tices that follows a uniform distribution and the connection of
new vertices that in particular follows a log-normal distribu-
tion here, while the inequality of the Matthew effect relates
to the boundary of the joint PDF. Actually, the connection
may also be another distribution like the uniform distribution
in some special cases, but in this paper we employ the log-
normal distribution and obtain the subnormal distribution. In
further work, we may extend the study to other joint PDFs
as well.

We find that the subnormal distribution can also describe
the wealth distribution, which can be explained by the network
theory. The income is regarded as the new coming vertex, and
the arrangement or consumption for this income is its connec-
tions to the network. The whole network represents the total
wealth, which the degree each vertex represents the wealth
of one individual. Apparently, the inequality of the Matthew
effect influences the consumption of individuals. For example,
people are more likely to buy goods of famous brands, and
these firms are getting richer, which is highly similar with the
connection process of evolving networks. Therefore, beyond
the evolving networks, we speculate whether that the subnor-
mal distribution can be universally employed to describe the
distribution with inequality and growing which requires further
studies.

Additionally, according to Gibrat’s law, the size of a firm
and its relative rate of growth are independent, which is also
applied in evolving networks. One result of Gibrat’s law is that
processes characterized by Gibrat’s law converge to a limiting
distribution, which may be log-normal or power law, depend-
ing on more specific assumptions about the stochastic growth
process. Furthermore, we precisely deduce that this kind of
distribution based on the unequal growth follows that the rich
tends to be richer while the poor is subnormal in this paper,

which holds both characters of the log-normal and power-law
distributions. For the special situation that the connection or
income is constant, the subnormal distribution reduces to be
power-law, and if the individual is constant and nonrandom,
the distribution reduces to be log-normal. In that sense, we can
also argue that the subnormal distribution is a combination of
log-normal and power-law with the peak of the former and the
tail of the latter. Above all, we agree with Gibrat’s law that
the income/connection is log-normally distributed, while the
final wealth/degree follows a subnormal distribution.

However, we also have a dilemma on how to confirm the
parameters of subnormal distribution. In this paper, we can
only roughly determine the influence of γ , μ, and σ on the
tendency of a subnormal curve, but cannot accurately deduce
their attributes for a subnormal function. One possible solution
is to solve the mode and median of the PDF, which greatly
contributes to determining the function curve and is our goal
for the next stage. The network model in this paper can be
used to fit the degree distribution of the real network well, in
addition to degree, there are many other criterions in networks
such as the clustering coefficient, the average shortest paths, k
shell, and so on, which are also worthy of study in the future.
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