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ABSTRACT

In the evolution of cooperation, the individuals’ payoffs are commonly random in real situations, e.g., the social networks and the economic
regions, leading to unpredictable factors. Therefore, there are chances for each individual to obtain the exceeding payoff and risks to get the
low payoff. In this paper, we consider that each individual’s payoff follows a specific probability distribution with a fixed expectation, where
the normal distribution and the exponential distribution are employed in our model. In the simulations, we perform the models on the weak
prisoner’s dilemmas (WPDs) and the snowdrift games (SDGs), and four types of networks, including the hexagon lattice, the square lattice,
the small-world network, and the triangular lattice are considered. For the individuals’ normally distributed payoff, we find that the higher
standard deviation usually inhibits the cooperation for the WPDs but promotes the cooperation for the SDGs. Besides, with a higher standard
deviation, the cooperation clusters are usually split for the WPDs but constructed for the SDGs. For the individuals’ exponentially distributed
payoff, we find that the small-world network provides the best condition for the emergence of cooperators in WPDs and SDGs. However,
when playing SDGs, the small-world network allows the smallest space for the pure cooperative state while the hexagon lattice allows the
largest.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0099444

The evolution dynamics in human population reveals how the
cooperative behaviors emerge in society. Abundant previous
studies have proposed different social dynamic mechanisms and
explained the formation of cooperators in the networked popu-
lation. In a population with networked relationship, the vertices
present players that participant in the evolutionary game, and the
edges denote the reciprocal relation. Recently, the concept of vari-
able payoff in the evolutionary game theory has provided a new
perspective for a better understanding of the cooperation.1,2 To
further investigate the evolutionary cooperation in the structured
population, we introduce the stochastic variables to the spatial
structures and study the cooperation frequency and formation in
lattices and small-world networks.

I. INTRODUCTION

Understanding the evolution of cooperation has been a long-
debate task since Darwin,3,4 where the past studies built the research
framework as the evolutionary game theory.5,6 When the individuals

make decisions, the social dilemmas occur in populations because
of the conflict of partial and global interests.7 One common evo-
lutionary game model is the prisoner’s dilemma,8 in which people
can choose to be cooperators or defectors. The cooperators bring the
whole population high earnings while the defectors only lead to their
own success. There has been research showing that the only Nash
equilibrium of the prisoner’s dilemmas is the defection in the well
mixed populations,9 but fortunately, Nowak and May first brought
spatial chaos into the weak prisoners dilemmas (WPDs) and found
that the cooperators emerge as long as the individuals are in spatial
structures.10 Thereafter, numerous studies presented the emergence
of cooperators in network structures for various social dilemmas.11

However, the study by Hauert and Doebeli on the SDGs showed
that the spatial structure does not always promote the cooperative
behaviors,12 but often inhibits the evolution of cooperation. Later,
Santos and Pacheco found that the scale-free networks substantially
promote the outbreak of cooperators for both the WPDs and the
SDGs whatever the network parameter is.13 Besides, since the pro-
posal of the five rules for the evolution of cooperation,14 the research
on human cooperation has sprung up to understand the formation
of human behaviors.15
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In the past decade, many complex network models emerge
as the times require,16 including the multi-layer networks,17,18 the
temporal networks,19,20 and the higher-order networks.21,22 These
innovative network models provide the population structure for
the research of the spatial evolutionary games.23 On the multi-layer
networks, the studies focus on how the couple of each network
influence the cooperative behaviors,24 and the population structures
are regarded as the networks of networks.25 On the temporal net-
works, the current studies focus on the change of the network edges
and the cooperation density,26 where the interaction relationships
can be time-varying.27 On the higher-order networks, the existing
studies pay attention to the influence of the higher-order struc-
ture on the cooperative behaviors,28,29 and the interaction process
is extended from the individual-to-individual pattern to the group-
to-group pattern. The existing studies on these novel network types
have been already concluding that the cooperative behaviors emerge
in different forms and network structures.23 For example, Zhang
et al. studied the spatial public goods game on two-layered lattices,30

finding that much stronger learning preference will override the
role of interdependency in the evolution of cooperation. Han et al.
studied the evolutionary public goods game model in an activity-
driven network.31 Civilini et al. studied the evolutionary game model
of group choice dilemmas on hypergraphs,32 which can explain
the emergence of irrational herding and radical behaviors in social
groups.

Over the past years, studies are concentrating on the evolution
of cooperation with some stochastic phenomenons in real society.
For example, Su et al. recently studied the evolution of coopera-
tion with game transitions,33 finding that the game transitions can
significantly reduce the critical benefit-to-cost threshold for cooper-
ation. Perc studied the coherence resonance in the spatial prisoner’s
dilemmas,34,35 which introduced the white noises to the individu-
als’ payoff for square lattices in the social dilemmas. Zeng et al.
introduced the individual’s stochastic birth and death to the spatial
evolutionary game model,36,37 finding that the spatial inheritance38

enhances the cooperation if each individual’s lifespan are limited in
the Poisson growing complex networks.39,40

In real systems, agents’ payoffs are usually not immutable
and frozen as they interact with others in the evolutionary games.
Commonly, the payoffs are floating around some empirical values.
Therefore, in this paper, we mainly focus on the variable payoffs
and stochastic risks in the evolution of cooperation. Consequently,
we presume that individuals’ payoffs follow a specific probability
distribution. Each player can get higher or lower payoffs than the
expectation, leading to both unpredictable chances and risks in the
spatial evolution of cooperation. In our model, the standard devia-
tion of the probability distribution can be regarded as the risk one
may possess. Our work introduces the stochastic risks in the evo-
lution of cooperation and helps to understand the effect of variable
payoffs in human society. In simulations, we mainly pay attention
to the cooperation density, the strategy formation, and the individu-
als’ payoffs at the network’s stable state. Additionally, we emphasize
that the concept of variable payoffs in the evolution of cooperation
is not new.1 For example, Perc and Szolnoki studied the diversity in
wealth and social status and found that the distribution of wealth
and social status might have played a crucial role.41 Amaral et al.
studied the spatial evolutionary game where the game played at each

interaction is drawn uniformly at random, highlighting the favor-
able role of heterogeneity regardless of its origin.42 Nevertheless, our
results show new conclusions for the promotion of cooperation with
the individuals’ variable payoffs.

This paper is organized as follows. In Sec. II, we introduce our
game model with the stochastic risks. In Sec. III, we show our sim-
ulation results on cooperation density. In Sec. IV, we conclude our
work.

II. MODEL

In real systems, the payoffs that agents obtain from each other
in the evolution of cooperation are usually fluctuating instead of
constant. In this section, we introduce the spatial evolutionary game
model under variable payoffs. Generally, in the game model with
two players and two strategies, both individuals receive R on the
mutual cooperation and P on the mutual defection. Additionally, the
one-way cooperation yields T for the defector and S for the cooper-
ator. Specifically, we consider the weak prisoner’s dilemma (WPD)
with R = 1, T = b, P = S = 0 and the snowdrift game (SDG) with
R = 1, S = 1− r, T = 1+ r, P = 0. In the networks, each vertex
presents an individual, and each edge presents the relationship
between two individuals, and each individual only interacts with
their neighbors. We suppose that an individual’s payoff can be a ran-
dom variable that follows a certain probability distribution but has
a fixed expectation, which leads to a random fluctuation risk when
the individuals interact with their neighbors. Additionally, the stan-
dard deviation of the payoff is regarded as the risk of the interaction,
inducing that each individual has both the chance to obtain a higher
payoff than the expectation and the risk to get a lower payoff. Con-
cretely, we consider two kinds of probability distributions, including
the normal and the exponential distribution. The normal distributed
payoff allows individuals to obtain higher or lower payoffs than the
expectation with the same probability. Additionally, in this case, the
variance is independent of the payoff. The exponential distributed
payoff provides a high probability for the individuals to get higher or
lower payoffs if the expectation is high. In the following contents, we
primarily introduce the normal distributed payoff model. Then, we
introduce the exponential distributed payoff model. Subsequently,
we illustrate the strategy update rule.

A. Normal distributed payoffs

As is well known, the normal distributions have been found in
many real situations for the individuals’ payoffs.43 The first prob-
ability distribution that we introduce for the individual’s payoff is
the normal distribution. The normal distributed payoff has a fixed
standard deviation value (σ ) and is independent of the expectation.
Therefore, the random payoff that an individual gets is not related
to the expected payoff. We assume that an individual’s payoff from
a neighbor, say x, follows the normal distribution denoted as

f(x, µ, σ) =
1

√
2πσ

exp

(

−
(x− µ)2

2σ 2

)

, (1)

herein µ is the expectation and σ indicates the standard deviation.
According to our assumption, the payoff matrix of the WPD with
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the normal distributed payoff can be defined as

M1 =
(

N(1, σ) N(0, σ)

N(b, σ) N(0, σ)

)

, (2)

where 1 < b ≤ 2 is a flexible parameter, and the SDG is defined as

M2 =
(

N(1, σ) N(1− r, σ)

N(1+ r, σ) N(0, σ)

)

, (3)

herein 0 ≤ r ≤ 1. N(µ, σ) in Eqs. (2) and (3) denotes the random
number operator for the normal distribution with the parameters µ

and σ in Eq. (1). µ is the game parameter in classical game mod-
els, and σ describes the deviation degree from the expected payoff.
Besides, x denotes the payoff that an individual obtains.

It is worth noting that the WPDs are not typical pris-
oner’s dilemmas and there are some differences. According to the
definition of the normal distribution, a smaller σ ensures a lower
probability to obtain a greater or smaller payoff and makes the
player’s income relatively stable. However, if the deviation σ is
large, the players may have more opportunities to obtain both the
improved payoff and the reduced payoff, which brings agents both
the chances and the risks.

B. Exponential distributed payoffs

Next, we assume that if one tries to earn more, the risk will be
higher as well, which is a common rule in real societies. We propose
to use the exponential distributed variables to describe the payoffs
in the evolution of cooperation. The risk of the exponential dis-
tributed payoff is related to the expectation and is higher if the payoff
is higher as well. The exponential probability density function has
two writing styles. In this paper, we presume an individual’s payoff
x from one neighbor follows the probability distribution denoted as

f(x, θ) =
1

θ
exp−

x

θ
, x > 0, (4)

where θ is the expectation. Additionally, θ 2 is the variance of each
individual’s payoff. Accordingly, as the increase of θ , the fluctu-
ation is more unstable. The payoff matrix of the WPD with the
exponential distributed payoff can be defined as

M3 =
(

E(1) E(ξ)

E(b) E(ξ)

)

, (5)

and the SDG as

M4 =
(

E(1) E(1− r)
E(1+ r) E(ξ)

)

, (6)

herein E(θ) denotes a random number that follows the exponential
distribution with the parameter θ in Eq. (4), and b, r are defined
the same as above. ξ is a tiny number to ensure the exponential
distribution is meaningful.

We emphasize again that the standard deviation changes as
the expected payoff, i.e., the payoff fluctuation level floats as the
game parameters. the fluctuation. Besides, the standard deviation is
higher than 1 if the individual’s payoff is greater than 1. Therefore,
when the individuals try to obtain a higher payoff than the mutual
cooperation, both the chance and risk increase as the payoff does.

C. Strategy update

Agents in the evolutionary game often pursue higher returns.
Therefore, we consider that each individual learns the profitable
strategies among its neighbors. In one time step, all individuals cal-
culate their total payoffs, say 5x for the individual x, by summing
their returns from the neighbors. Then, each individual in the net-
work randomly selects a neighbor and compare their payoffs. If a
player x with the payoff 5x randomly selects her neighbor y with the
payoff 5y, the player x tries to imitate the player y’s strategy if and
only if 5y > 5x with the probability

W(x← y) =
[

5y −5x

D max(kx, ky)

]1

0

, (7)

where D = b in the WPDs, and D = 1+ r in the SDGs. If 5y ≤ 5x,
the player x does not study its neighbor y’s strategy. The denom-
inator D max(kx, ky) is the normalized item in numerous previous

studies. However, we further define the operator [·]1
0 as

[a]1
0 =







0, a < 0,
a, 0 ≤ a ≤ 1,
1, a > 1.

(8)

The reason why we adopt this operator is that the probability may
be greater than 1 and less than 0 because of the variable payoff, and
once this happens, we need to transfer the result to ensure the nature
of the probability.

III. RESULT

In this section, we present our simulation results on coopera-
tion density to show how cooperative behaviors vary with different
game parameters. We mainly focus on the cooperation density, the
cooperative cluster formations, and the population payoff distribu-
tion at the evolution stable state. We perform the simulation on
four network types, including the hexagonal lattices (HL, 36× 36,
N = 2592), square lattices (SL, 50× 50, N = 2500), Watts–Strogatz
small-world networks (SW, N = 2500, k = 8, p = 0.4), and triangu-
lar lattices (TL, 70× 70, N = 2450) with the periodic boundary, to
ensure that the network sizes are approximately 2500, which guar-
antees that the cooperator density is barely affected by the network
sizes. Each individual is set to be a cooperator or a defector with the
same probability of 50%. According to our simulation, the evolution
process is stable after the 4500th time step. Therefore, we calculate
the cooperation density by averaging each cooperation density from
the 4500th step to the 5000th step in all following simulations. All
simulation results are carried out on Python. All networks are gener-
ated by the function networkx.generators.lattices in the project Net-
workx. Besides, the normal distributed and exponential distributed
variables are generated by the function numpy.random.normal and
numpy.random.exponential, respectively, in the project Numpy.
And, the cooperation density (fc) is the percentage of cooperators
in the whole population.

A. Payoffs following the normal distribution

As stated previously, we consider the evolution of population
strategy with individuals’ payoffs that follow different probability
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distributions. We first display the results with individuals’ normal
distributed payoffs for the WPDs and SDGs.

1. Cooperation density

(a) WPDs. Primarily, we present the cooperation density
results for the WPDs in the parameter space (b, σ) with individu-
als’ normal distributed payoffs. The defector’s temptation b and the
standard deviation σ are in the range (1, 2] and [0, 1), respectively.
In Fig. 1, we show the cooperation density heatmaps in the game
parameter space (b, σ). Since the cooperation density varies on the
different network structures, we set the different y axis ranges for
each network type for a better presentation.

As is shown in Figs. 1(a) and 1(b), there is no pure cooperative
strategy formation even if the defector’s temptation is small. Only
mixed and pure defective states exist in the parameter space. The
HL and the SL are fully occupied by the defectors if the defector’s
temptation b > 1.10 and b > 1.15, respectively. Therefore, we can
say that the SL allows more cooperators than the HL. Besides, the HL
and the SL provide the highest cooperation annihilation threshold
(the maximum game parameter for the emergence of cooperators)
as σ is around 0.22 and 0.12 separately, where the greater or lower
σ s allow the smaller spaces for the cooperation.

In Figs. 1(c) and 1(d), it is obvious that the SW and the TL pro-
vide more cooperators to the population than the HL and the SL,
and there are pure cooperative states. Besides, the SW promotes the
cooperative behaviors for the most parameter space and provides
the best condition for pure cooperation, where the defection pres-
ence threshold (the minimum game parameter for the defectors to
emerge) is the highest. Additionally, for the SW, the cooperators
may emerge provided b < 1.60, while for the HL, no cooperator
exists in the population provided b > 1.28. And, the cooperation
annihilation threshold decreases with the increase of the standard
deviation σ . Although in the HL and the SL, the cooperation behav-
iors are enhanced if σ is small, we can say that a higher σ usually
inhibits the emergence of cooperation in the spatial WPDs with
the four network types we consider. Besides, the SW provides the

best condition for cooperative behaviors, while the HL provides the
worst.

(b) SDGs. With the same network sizes as above, we next
present the cooperation density for the SDGs in the game parameter
space (r, σ). As is shown in Figs. 2(a), 2(b), and 2(d), the HL, the SL,
and the TL allow more spaces for the pure cooperative states with
a greater σ , i.e., the greater standard deviation σ leads to a steeper
phase transition between the pure cooperation and the pure defec-
tion as the increase of r. Additionally, the HL provides both the most
and least parameter space for the pure cooperation and the mixed
state, respectively. However, in the SW, the cooperation density is
hardly affected by the standard deviation σ . Besides, the SW allows
more symbiotic space for cooperation and defection, which inhibits
the emergence of pure defection in the population. In the HL, the
cooperation annihilation threshold is decreased with the increase of
r, bringing less space for the mixed state with both the cooperators
and the defectors.

Nevertheless, the cooperation annihilation thresholds of the SL,
the SW, and the TL are relatively stable, ensuring that the condi-
tion for the pure defection barely changes if the standard deviation
σ is different. Therefore, we can say that a high standard deviation
σ usually promotes the emergence of spatial cooperative behaviors
in the four network types we consider.

2. Cooperation snapshots in SLs

To investigate the formation of cooperative behaviors with the
individuals’ payoffs that follow the normal distribution, we present
the snapshots for both the WPD and the SDG in the SLs with
the size N = 50× 50 in Figs. 3 and 4. Each individual is set as a
cooperator or defector with the probability of 50%. To ensure the
stationary state of the networks, we observe the cooperation snap-
shots at t = 5000. The blue and white cells present the cooperators
and the defectors separately.

(a) WPDs in SLs. To start with, we show the cooperation snap-
shots in Fig. 3 for the WPDs by setting b = 1.02, 1.03, 1.04 and
σ = 0.10, 0.30, 0.50, 0.70 for the cross simulations. For all the defec-
tor’s temptation we presume, as σ changes from 0.10 to 0.30,

FIG. 1. Cooperation heatmaps of WPDs. Cooperative behaviors are usually enhanced with a low standard deviation in WPDs. This figure presents the cooperation density
for the WPDs with individuals’ normal distributed payoff on HL [1(a)], SL [1(b)], SW [1(c)], and TL [1(d)]. We set the x axis as the standard deviation σ with the range [0, 1.0]
and the y axis as the defector’s temptation b with the range (1.0, 1.2] in 1(a) and 1(b), (1.0, 2.0] in 1(c) and (1.0, 1.4] in 1(d). Each cooperation density is obtained by averaging
the last 500 evolution steps in the 5000 total steps. The cooperation density (fc) is high with a warm color in the parameter spaces.
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FIG. 2. Cooperation heatmaps of SDGs. Cooperative behaviors are usually enhanced with a high standard deviation in SDGs. This figure presents the cooperation
density for the SDGs with individuals’ normal distributed payoff on HL [2(a)], SL [2(b)], SW [2(c)], and TL [2(d)]. We set the x axis as the standard deviation σ with the range
[0, 1.0] and the y axis as the cost-to-benefit ratio ratio r in each figure. Each cooperation density is obtained by averaging the last 500 evolution steps in the 5000 total steps.
The cooperation density (fc) is high with a warm color.

the cooperation densities decrease slightly, and only a small num-
ber of cooperation clusters split. For the temptation b = 1.02
[Figs. 3(a)–3(d)], as σ increases from 0.30 to 0.70 and 0.90, the coop-
eration density reduces moderately. However, for the temptation
b = 1.03 [Figs. 3(e)–3(h)] and 1.04 [Figs. 3(i)–3(l)], the cooperators
reduce substantially if the standard deviation σ increases. Specifi-
cally, provided b = 1.02 and σ = 0.10, the cooperation density we
obtain at t = 5000 is 0.6500. With the increase of σ , the cooper-
ation density reduces to 0.6388 for σ = 0.30, 0.4776 for σ = 0.70,
and 0.3372 for σ = 0.90. When we set b = 1.03 and 1.04, the coop-
eration density becomes more sensitive to the standard deviation
σ . For the defector’s temptation b = 1.03, if σ = 0.10, the cooper-
ation density of the corresponding snapshot is 0.6248. As σ changes
from 0.10 to 0.30, the cooperation density becomes 0.5828, and as σ

increases to 0.70 and 0.90, the corresponding cooperation propor-
tions reduce to 0.4012 and 0.2316, respectively. For the defector’s
temptation b = 1.04, if σ = 0.10, the cooperation density is 0.6172.
As σ increases to 0.30, 0.70, and 0.90, the cooperation densities
drop to 0.5736, 0.3144, and 0.0796 separately with a sharp decline.
Generally, the clusters of the cooperators are disintegrated with the
increase of the standard deviation σ when the individuals play the
WPDs.

There have been numerous previous studies indicating that the
network structure helps to build up the cooperative clusters and
then defend the invasion of the defectors because each agent has
to play the same cooperative strategy with its neighbors to main-
tain the considerable mutual income. However, as shown by the
snapshots on SLs, with the same defector’s temptation b, the pop-
ulation is more likely to split the cooperation clusters with a large
standard deviation σ . Considering an already formed cooperative
cluster, if the payoff they get is higher than the expectation (or
just relatively high), the cooperative cluster is stable. However, once
an individual gets only a small payoff and even smaller than the
defector’s among its neighbor, there will be an instantaneous dis-
integration for the cooperative cluster, which is hard to reconstitute.
Besides, the higher σ makes the cooperative clusters easier to split
but harder to reconstruct. Therefore, a high standard deviation σ

usually brings more defectors to the population. Additionally, there

is an equilibrium between the decomposition and reconstruction of
cooperative clusters, ensuring that the population strategy combina-
tion can be relatively stable in our simulations. And, as shown by the
snapshots on SLs, with the same defector’s temptation b, the pop-
ulation is more likely to split the cooperation clusters with a large
standard deviation σ .

(b) SDGs in SLs. Next, we show the snapshots for SDGs on
SLs in Fig. 4. We set the game parameter r = 0.25, 0.35, 0.55 and
σ = 0.10, 0.30, 0.70, 0.90 for the cross simulations. Generally, for
r = 0.25 [Figs. 4(a)–4(d)] and 0.35 [Figs. 4(e)–4(h)], the cooperation
densities rise prominently as the increase of the standard deviation
σ , and for r = 0.55 [Figs. 4(i)–4(l)] there is also a slight increase as
σ increases in contrary to the WPDs. For the cost-to-benefit ratio
r = 0.25, the cooperation density for σ = 0.10 is 0.6948. As the stan-
dard deviation σ increases to 0.30, the cooperation proportion is
increased as well to 0.7644. For σ = 0.70 and 0.90, the individu-
als reach a pure cooperative state, where the cooperation density is
1 and can be regarded as a steep increase. For the cost-to-benefit
ratio r = 0.35, the cooperation density we obtain for σ = 0.10 is
0.5532, and it rises to 0.5880 if σ = 0.30. When the standard devi-
ation σ = 0.70 and 0.90, the corresponding cooperation densities
are 0.6476 and 0.7136, respectively. Obviously, the upward trend
for r = 0.35 is smaller than r = 0.25 as the standard deviation σ

increases. For r = 0.55, the cooperation densities are 0.2848 and
0.3008 separately for the standard deviation σ = 0.10 and 0.30. With
the increase of σ , the cooperation densities are almost unchanged,
and the cooperation proportions we obtain are 0.3132 and 0.3084
for σ = 0.70 and 0.90, respectively. Generally, in opposition to the
results in WPDs, the cooperative clusters grow with the increase of
the standard deviation σ if the individuals play the SDGs.

In previous studies, it has been shown that the individuals in
SDGs often form the filamentous cooperation clusters because the
individuals tend to play the opponent’s counter-strategy. If the cost-
to-benefit ratio is higher, the defectors are more likely to invade the
population and bring down the cooperation density. According to
our simulation results, a high standard deviation σ usually brings
more cooperators to the population if the cost-to-benefit ratio r is
small. Besides, a higher σ promotes the cooperators to form more
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FIG. 3. Cooperation snapshots of WPDs with normal distributed payoffs. The cooperators’ clusters usually split up with a high standard deviation in WPDs. This
figure presents the snapshots of the evolution of cooperation in the SLs. The game type is the WPD. We set b = 1.02, 1.03, 1.04 and σ = 0.10, 0.30, 0.50, 0.70 for cross
simulations. Each snapshot is presented at t = 5000 with the SL size N = 50× 50. The blue and white cells are the cooperators and the defectors, respectively.

cooperation clusters. Although if r is high, the cooperation densi-
ties are almost the same as the change of σ , the population is also
more likely to form the cooperation clusters with a higher standard
deviation σ . Therefore, the individuals promote their neighbors to
play the same cooperative strategy and tend to cooperate with their
neighbors instead of adopting the opposite strategy in the SDGs
with a high standard deviation of their payoffs, which enhances the
emergence of cooperation in the population.

3. The population payoffs

By analyzing the individuals’ payoffs in the stable state of the
networks, we present the boxplots of the individuals’ average payoffs

in the last 500 time steps in Figs. 5 (WPDs) and 6 (SDGs), respec-
tively. We set σ = 0.10, 0.30, 0.50, 0.70, 0.90 and investigate the
payoff distribution on the four types of networks. It is worth not-
ing that the average payoffs are the average of time instead of each
individual’s degree. Besides, the numerical difference in the mean
payoff comes from the difference in the network structure.

(a) WPDs. In Fig. 5, we show that the medians (red lines) of
individuals’ payoffs usually decrease as the increase of σ s as well as
the mean values (green triangles). However, in the HL, there is an
increase of both the median and the mean value from σ = 0.10 to
σ = 0.30, which is shown previously that a slight rise of the cooper-
ation density emerges provided the standard deviation σ is small in
HLs. Besides, the upper quartiles and lower quartiles also show this
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FIG. 4. Cooperation snapshots of SDGs with normal distributed payoffs. The cooperators’ clusters usually form with a high standard deviation in SDGs. This
figure presents the snapshots of the evolution of cooperation in the SLs. The game type is the SDG. We set r = 0.25, 0.35, 0.55 and σ = 0.10, 0.30, 0.50, 0.70 for cross
simulations. Each snapshot is presented at t = 5000 with the SL size N = 50× 50. The blue and white cells are the cooperators and the defectors, respectively.

nature. However, the quartile range does not show any regular pat-
tern in the HL [Fig. 5(a)], the SL [Fig. 5(b)], and the TL [Fig. 5(d)],
but becomes smaller as the increase of the standard deviation σ . In
addition, for the HL, the SL, and the TL, the number of the large
deviation payoff values are small, but for the SW, there are many
more large deviation payoffs. And, the large deviation payoff values
for the SW are higher than the upper line of the box plot.

(b) SDGs. With the same network types and sizes as above, we
then display the boxplots of the population payoff in Fig. 6. As is
shown in Figs. 6(a), 6(b), and 6(d), both the upper and the lower
quartiles increase as the growth of the standard deviation σ in the
HL, the SL, and the TL. Nevertheless, in Fig. 6(c), the individuals’
payoffs in the SW are hardly affected by σ ’s as well as the medians

and mean values because of the stability of the cooperation density to
the standard deviation σ . Additionally, although the quartile ranges
are almost unchanged with the increase of σ , there are many payoff
values with large deviation, which is different from the population
payoff in the WPDs. In the HL and the SL, there are more individuals
who get a smaller payoff than the lower limit of the boxplot. But in
the SW, more individuals obtain a higher payoff than the upper limit
of the boxplot.

B. Payoffs following the exponential distribution

Then, we focus on the population strategy for WPDs and SDGs
with individuals’ exponential distributed payoffs.
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FIG. 5. The boxplots of individuals’ average payoffs for WPDs with normal distributed payoffs. The population payoff often decreases with a high standard
deviation in WPDs. This figure presents the boxplots of average payoffs in the evolutionary WPDs for σ = 0.10, 0.30, 0.50, 0.70, 0.90 in the HL [5(a)], the SL [5(b)], the
SW [5(c)], and the TL [5(d)]. We set the defector’s temptation as b = 1.03 in 5(a), 5(b), 5(d) and b = 1.10 in 5(c), respectively. The red lines denote the medians, and the
green triangles indicate the mean value. The lower and higher lines of the boxes are the lower quartiles and the higher quartiles separately. Each individual’s average payoff
is obtained by averaging the payoff in the last 500 game rounds in 5000 total rounds.

1. Cooperation density

We now pay attention to the individuals’ payoffs that follow the
exponential distribution. The results are presented in Fig. 7.

(a) WPDs. We set the range of the horizontal axis as [1.00, 1.30]

for a better presentation of the cooperation density in Fig. 7(a). For

the WPDs, it is obvious that only the SW and the TL allow the for-

mation of the pure cooperative state, which sustains in the situations

with b < 1.03 and b < 1.01, respectively. However, in the SL and
HL, the pure cooperative state does not exist even if the temptation
b is small. Besides, there is a rapid phase transition between the pure
cooperative state and the pure defective state in the TL, the SL, and
the HL, providing less space for the mixed state of cooperators and
defectors. Additionally, the SW ensures more chances for the popu-
lation to have a mixed strategy formation. For the SL and the HL, the
cooperation annihilation thresholds are both about 1.07. For the TL,
the cooperation annihilation threshold we obtain is approximately
1.11 and is higher than the SL and the HL. For the SW, the value

is 1.25, which is much higher than the other three network types.
Therefore, the SW provides the best condition in the four types of
networks for the emergence of cooperation when the individuals
play the WPDs with exponential distributed payoffs.

(b) SDGs. Next, we pay attention to the cooperation density
for the SDGs. In Fig. 7(b), we show the plots of cooperation den-
sity against the cost-to-benefit ratio r. Generally, the SW provides
the best condition for the existence of cooperators, but the worst
for the pure cooperative state. On the contrary, the HL provides the
largest parameter space for the pure cooperative state, but the nar-
rowest for the mixed strategy state. For the SW, the pure cooperative
state sustains until r = 0.17, which is the smallest. For the TL and the
SL, the defection presence thresholds are 0.25 and 0.30, respectively,
and are higher than the SW. And, the highest defection presence
threshold is 0.36 in the HL. However, there is a rapid phase transi-
tion in the HL from the pure cooperative state to the pure defective
state, and the cooperation annihilation threshold is 0.60. The TL and
the SL provide the more relaxed condition for the coexistence of

FIG. 6. The boxplots of individuals’ average payoffs for SDGs with normal distributed payoffs. The population payoff often increases with a high standard
deviation in SDGs. This figure presents the boxplots of average payoffs in the evolutionary SDGs for σ = 0.10, 0.30, 0.50, 0.70, 0.90 in the HL [5(a)], the SL [5(b)], the SW
[5(c)], and the TL [5(d)]. We set the cost-to-benefit ratio as r = 0.45 in 5(a)–5(d). The red lines denote the medians, and the green triangles indicate the mean value. The
lower and higher lines of the boxes are the lower quartiles and the higher quartiles separately. Each individual’s average payoff is obtained by averaging the payoff in the last
500 game rounds in 5000 total rounds.
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FIG. 7. Curves of the cooperation density fc and the game parameters. The
SWsprovides the largest space for the emergence of cooperators. This figure
presents the cooperation density with the change of the game parameters in the
SW (red plot), TL (green plot), SL (blue plot), and HL (black plot) when individuals’
payoffs follow the exponential distribution. Figures 7(a) and 7(b) show the results
for the WPDs and SDGs, respectively. ξ is set as 10−6. The purple plot in Fig. 7(b)
presents the equilibrium state in the mixed population without the network struc-
ture and variable payoffs. Each cooperation density point is obtained by averaging
the last 500 evolution steps in the 5000 total steps.

the cooperators and defectors, where the cooperation annihilation
thresholds are 0.65 and 0.63 separately. For the SW, the mixed state
of cooperators and defectors sustains a much larger cost-to-benefit
ratio, and the cooperation annihilation threshold is 0.84. As shown
in previous studies, the equilibrium state for the SDGs in the uni-
formly mixed population (without any network structure) has 1− r
cooperators, presented as the purple plot in Fig. 7(b). Obviously,
the cooperation density is increased compared to the uniformly
mixed population if the cost-to-benefit ratio r is small (especially
for r < 0.5). However, the cooperators’ percentage reduces with the
increase of r. Therefore, we have the conclusion that if the cost-to-
benefit ratio is small, the exponential distributed payoff enhances the
emergence of cooperation in the SDGs for the four network types we
consider. Nevertheless, with the increase of r, the cooperation den-
sity becomes smaller than the equilibrium state and quickly drops to
the cooperation annihilation state.

2. Cooperation snapshots in SLs

Except the cooperation density, we hope to capture the forma-
tion of cooperation clusters. In Fig. 8, we present the snapshots of
both the WPDs and the SDGs for several groups of game parameters.

FIG. 8. Cooperation snapshots of WPD and SDG with exponential distributed payoffs. The cooperators’ cluster split up with the increase of the defector’s
temptation and the cost-to-benefit ratio. This figure presents the cooperation snapshots in SLs. Figures 8(a)–8(d) show the snapshots for the WPDs with the defector’s
temptation b = 1.02, 1.03, 1.04, 1.05 respectively. Figures 8(e)–8(h) show the snapshots for the SDGs with the cost-to-benefit ratio r = 0.25, 0.35, 0.45, 0.55, respectively.
Each snapshot is presented at t = 5000 with the SL size N = 50× 50. The blue and white cells are the cooperators and the defectors, respectively.
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In Figs. 8(a)–8(d), we display the snapshots of WPDs with the
game parameters b = 1.02, 1.03, 1.04, 1.05. It is worth noting that the
cooperation densities in Fig. 7 are obtained by averaging the last 500
evolution steps in the 5000 total steps. Therefore, the results that
we get in Fig. 7 are slightly different from the cooperation densi-
ties in the snapshots. The cooperation densities for b = 1.02 and
1.03 are 0.5724 and 0.5508 separately. As the defector’s tempta-
tion b increases to 1.04 and 1.05, the cooperation densities suddenly
drop to 0.2748 and 0.1864. Additionally, as the results shown in the
population forms the large scale cooperation clusters if the tempta-
tion is small, and they split into small cooperation clusters with the
increase of b. In Figs. 8(e)–8(h), we show the snapshots of SDGs with
the game parameters r = 0.25, 0.35, 0.45, 0.55. If the cost-to-benefit
ratio r = 0.25, there is a pure cooperative state for the whole pop-
ulation. For r = 0.35, 0.45, and 0.55, the cooperation densities are
0.7792, 0.5148, and 0.2968, forming fewer cooperation clusters with
the increase of r.

FIG. 9. The boxplots of individuals’ average payoffs for theWPDs and SDGs
with normal distributed payoffs. The SWs provide the highest population
payoff. This figure presents the boxplots of the population payoff with exponential
distributed payoffs for the WPDs [9(a)] and SDGs [9(b)] in the HL, the SL, the SW,
and the TL. The defector’s temptation for the WPDs is set as b = 1.03 [9(a)]. The
cost-to-benefit ratio for the SDGs is set as r = 0.40 [9(b)]. The red lines denote
themedians, and the green triangles are themean values. Each individual’s payoff
data are averaged by the last 500 time steps in the 5000 total steps.

3. The population payoffs

Next, we focus on the population payoff for the WPDs and
SDGs in the four types of networks we employ in Fig. 9. In Fig. 9(a),
we present the results for the WPDs, where the SW provides the
individuals with the highest payoff median and mean value. Addi-
tionally, the TL supplies the chances for the population to obtain a
higher overall payoff than the SL, and the SL offers a better condi-
tion for the population payoff than the HL. It is worth emphasizing
again that the difference in individuals’ payoff comes from the dif-
ferent network structures. Besides, some individuals’ payoffs are of
large deviation from the medians, which is similar to our results for
the WPDs with individuals’ normal distributed payoffs in Fig. 5(c).
For the results of SDGs in Fig. 9(b), the order of the payoff medians
and the mean values is the same as that of WPDs in Fig. 9(a), and
we have SW > TL > SL > HL. It is worth noting that when playing
SDGs, the large deviation payoff emerges more and is similar to our
results for the normal distributed payoff in Fig. 6. Additionally, the
payoff with a large deviation is usually smaller than the lower limit
of each box in the TL, the SL, and the HL. However, in the SW, there
are more values higher than the upper limit. And, for both WPDs
and SDGs, the population payoffs have the largest quartile range.
That is to say, the SW provides both the widest cooperation space
and the highest payoff for the population when playing the WPDs
and SDGs.

IV. CONCLUSION AND OUTLOOK

In this paper, we study the evolution of cooperation with
stochastic risks, considering the individuals’ payoffs as variables that
follow a specific probability distribution with a fixed expectation.
Two types of probability distribution function are considered in our
study, including the normal distribution, for which the expected
payoff does not influence the risk, and the exponential distribution,
where the expected payoff does influences the risk and especially if
the expected payoff is higher than the mutual cooperation. In sim-
ulations, we perform the evolution process on WPDs and SDGs
and focus on the cooperation density and the formation of the
cooperation clusters. We find that if the individuals’ payoffs follow
the normal distribution, the greater standard deviation σ usually
inhibits the emergence of cooperators for the WPDs, but promotes
the cooperation for the SDGs. By studying the cooperation snap-
shots in SLs, we suggest that the cooperation clusters split when
individuals play the WPDs with a large σ , which decreases the
cooperation density. Besides, if the individuals play the SDGs, the
filamentous cooperators agglomerate with a large σ and enhances
the emergence of the cooperation clusters. For the individuals inter-
act with their neighbors with the exponential distributed payoffs, we
conclude that the SW provides the best condition for both the pure
cooperative state and the mixed strategy state while the HL provides
the worst as the individuals play the WPDs. For the SDGs, we find
that the SW provides the best condition for the coexistence of the
cooperators and the defectors but the worst for the pure coopera-
tion state. Additionally, the HL guarantees the largest space for the
pure cooperation state but the fastest phase transition from the pure
cooperation to the pure defection state.

Based on our work, there are some extensions to investigate
more information for the spatial evolution of cooperation with
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stochastic risks. For example, there are other probability distribution
function to measure the stochastic risk in the population, such as
the log-normal distribution and the power-law distribution. Besides,
we study the cooperation density in 4 network types by the pair-
wise interaction strategy update among the population. There can
be some dominant conditions of cooperation in the population by
the birth–death process, the death–birth process, and the pairwise
interaction, which is related to the network structure and the game
model. All these issues will be studied in our future work.
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