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Protection Degree and Migration in the Stochastic
SIRS Model: A Queueing System Perspective

Yuhan Li , Ziyan Zeng, Minyu Feng , Member, IEEE, and Jürgen Kurths

Abstract— With the prevalence of COVID-19, the modeling of
epidemic propagation and its analyses have played a significant
role in controlling epidemics. However, individual behaviors,
in particular the self-protection and migration, which have a
strong influence on epidemic propagation, were always neglected
in previous studies. In this paper, we mainly propose two models
from the individual and population perspectives. In the first
individual model, we introduce the individual protection degree
that effectively suppresses the epidemic level as a stochastic
variable to the SIRS model. In the alternative population model,
an open Markov queueing network is constructed to investigate
the individual number of each epidemic state, and we present an
evolving population network via the migration of people. Besides,
stochastic methods are applied to analyze both models. In various
simulations, the infected probability, the number of individuals
in each state and its limited distribution are demonstrated.

Index Terms— Epidemic modeling, Markov process, queueing
network, evolving network, protection degree, migration.

I. INTRODUCTION

AS IS well known, epidemics are the enemy faced by
all of mankind and pose an enormous threat to human

health and society. There are infectious diseases appearing and
humans have been fighting against them all the time. From
bubonic plague to SARS followed by COVID-19, there is
a desire for controlling epidemics. Thanks to the increasing
concern and awareness of diseases, people urgently want to
understand the pathogenesis and propagation mechanism of
epidemics. Consequently, a number of researchers began to
study the propagation of epidemics increasingly in-depth and
proposed various models expecting to provide some solutions
to epidemic prevention and control.
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Kermack and McKendrick first proposed the SIR com-
partment model [1] and later the SIS model, which laid a
foundation for studies on epidemics. In the light of com-
plex networks, researchers began to combine networks with
epidemic models. Based on the typical SIS and SIR model,
as an improvement of the SIR epidemic model, the SEIR
epidemic model which includes the incubation phase was
proposed and studied on various networks, and different types
of the epidemic model was studied combined with networks,
e.g., layered networks [2], small-world networks [3], temporal
networks [4], and multiplex networks [5]. Besides, the SAIR
model was established to describe an asymptomatic phase as
an extension of the SIR model [6]. With the development
of the big data, utilizing data to track epidemics is useful
for analyzing the spreading of epidemics [7], [8]. Refer-
ence [9], studied the diffusion of opinion and information,
which was considered together with the epidemics spread-
ing in some research. For nowadays COVID-19 pandemic,
various models spring up, like the model with microscopic
Markov-chain approach for studying spatiotemporal spreading
of COVID-19 [10], the social-network based model con-
sidering the heterogeneity of the population [11], and the
model considering the travelling population and the lockdown
strategy [12].

In addition to a variety of epidemic models considering
different phases of epidemics, in recent years, individual
behaviors and awareness were studied a lot in epidemic
modeling. An SIS model regarding awareness weighted by
both local information, i.e., the fraction of infected neigh-
bors and global broadcast was proposed [13]. The awareness
leading to taking precautionary measures was considered and
described via a reduction of the transmission probability by
an exponential factor, which suppresses the prevalence of
epidemics [14], and a general awareness-induced general and
Brownian Motions was introduced in the SIRS model [15].
In [16], an unaware-aware process was built with the SIR
and evaluated the effect of the awareness with time step.
A two-layered networks was established for analyzing mul-
tiple influences between awareness diffusion and epidemic
propagation [17]. Coevolution of vaccination opinion and
awareness was also investigated in a three-layered complex
network [18]. Later, in terms of the spatial-temporal properties,
a layer-preference walk model based on the multiplex network
which consists static information spreading network and a
temporal physical contact network was studied [19]. Besides,
the individual behavior of wearing masks was considered
in [20], which evaluated the infection cost and the cost of
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wearing masks and discussed their effect on epidemics in
different cases.

A lot of methods are applied to analyzing epidemic models,
e.g., the classical and well-known mean-field method was
utilized to study various dynamics systems [21], [22], and
heterogeneous mean-field method (HMF) was proposed for the
propagation on heterogenous networks [23]. Later, the quench
mean-field approach [24], Markov-chain approach [25] and
N-intertwined approach [26] were established, which utilize
the adjacent matrix of networks. Later, graph-coupled hidden
Markov Models were proposed to study the spread on the
individual level [27]. With the exception of these typical
methods, queueing theory was usefully applied to epidemic
modeling in networks. Pieter Trapman et al. investigated the
relation between the spread of epidemics and the dynamics
of the queueing system which specifically is a M/G/1 queue,
and focused on the infectious individual number in the SIR
model at the moment of the first detection of the epidemic [28].
Queueing theory was also applied for SIS and SEIS epidemic
models where the basic reproductive number was provided
based on the queueing system approach [29]. In [30], the typ-
ical SI epidemic process with a recovery rule was modeled as
a queueing system for revealing its transient characteristics.
Later, an epidemic Markov queueing model was proposed by
constructing an M/M/1 queueing system with input and output
flow transition rates [31]. A queueing-based compartmental
model was developed to study the Ebola virus disease [32].
In [33], researchers developed a novel metric of viral trans-
missibility in queueing systems with overlapping sojourn time.

Various epidemic models have been studied as described
above, while there are still crucial issues on unfitting real
situations, e.g., the lack of the impact of individuals awareness
and migration on epidemic spreading. Though there are models
considering the individual awareness, it is only described as
a simple changeable parameter, ignoring its difference among
individuals. Moreover, most epidemic spreading processes are
studied on a static network. However, the population network
of an area is always changing due to the complex reality
factors which may cause the change of the network structure.

To improve the present epidemic models, in this paper,
we propose a novel SIRS epidemic model considering the
individual protection degree and the migration of mobile
population for more appropriate modeling. We establish two
Markov processes from two perspectives, respectively pre-
senting the dynamics of transitions between individual states
and the change of the individual number in three states.
In the individual model, we reveal the impact of contacts
and individual protective behaviors on propagation. In the
population model, by virtue of queueing theory, we explain
the mechanism of the change of the individual number via
constructing a Markov queueing network. In the simulation,
we demonstrate the impact of the protection degree on the
epidemic, the number of individuals varying with time and
the distribution of the individual number.

The organization of the paper is as follows: In Section II,
we display the construction of proposed models and give
analysis and theoretical results of the model. Simulations are
carried out to demonstrate the validity of our models and

theorems in Section III. Conclusions and future work are given
in Section IV.

II. EPIDEMIC SPREADING IN COMPLEX NETWORKS

BASED ON MARKOV METHOD

On the basis of typical epidemic models, we propose
a new epidemic SIRS model regarding the migration of
mobile population as well as the awareness of individual
protection in an epidemic. We construct a network-based
epidemic model. Suppose that each individual is a vertex
in a network, and edges indicate contacts between vertices.
Disease spreads throughout networks on account of infected
individuals engaged in contacting the susceptible via links
among them. And the network get evolved due to the migration
of people. Additionally, the Markov method is applied to the
SIRS epidemic modeling whose results can be displayed as a
stationary value in a stochastic form distinguished from those
converging to a specific value.

In terms of a living individual in our individual model,
it randomly transforms among three states that are suscepti-
ble (S), infected (I) and recovered (R). Assume that the future
state of an individual only depends on the current state and
is independent of past states. The state of an individual can
be therefore regarded as a non-homogeneous Markov chain,
where three states are taken as the state space of Markov
chain. We mark the three epidemic states with integers as 0,
1, 2. In the analysis below, we propose the transition matrix
of states of individuals and display the iteration formulation
of the limited distribution of three epidemic states.

In the population model, we take the number of individuals
in different states separately as a continuous-time Markov
process {N(t), t > 0} which takes on values in the set of
nonnegative integers 0, 1, 2, · · · . For each state, the number
of the individual varies with time as a result of the migration
of individuals as well as transitions between epidemic states.
In this model, we focus on the expression of transition
formulas and expectations of the individual number of three
states. In this section, we model the epidemic on networks by
constructing the above processes.

A. Markov Chain of Individual State
Primarily, we review the classical SIRS epidemic model.

Let S be the number of susceptible individuals, N be the total
number of individuals, and β, γ be the given parameters.
An infected individual has the ability to infect susceptible
individuals at a rate βS/N and recovers to become recovered
at a constant rate γ while recovered individuals avoid being
infected but can be susceptible again by a certain probability
α owing to the immune suppression. Next, we creatively
introduce the conception of protection degree of individuals
to depict the behaviors that individuals improve the aware-
ness of protecting themselves from infected people, which
results in disconnections of contacts with infected ones. The
reason for proposing the protection degree is that during an
epidemic people are likely to cut down contacts to others
to protect themselves. Thus, we take the protection degree
into consideration to describe individual protective behaviors
when modeling the epidemic propagation. We assume that
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the protection degree is a nonnegative variable following a
Poisson distribution as definition 1, which is reasonable for
characterizing the randomness of the individual protection
degree. The parameter of the Poisson distribution is also called
the intensity typically denoted as λ, while we hereby denote
by μ the parameter of the Poisson distribution to avoid the
same notation of the input rate in the following section.

Definition 1: Let U denote the protection degree, which is a
continuous random variable following the Poisson distribution,
expressed as

U ∼ P(μ). (1)

where μ is the parameter of the Poisson distribution.
In real situations, the higher degree of protection an individual
leads to the higher probability that he breaks edges with
infected ones, which leads to less infected neighbors in terms
of the network. Therefore, we transform the protection degree
into the form e−u with a range from 0 to 1. In this way,
we define the valid rate of infected neighbors f ,

f = e−u. (2)

Suppose that ρ j (n) is the original number of infected
neighbors of node j at the time step n. Then the number of
valid neighbors d j (n) is expressed as

d j (n) = f · ρ j (n). (3)

Then, we apply the Markov Chain method to construct the
propagation from the perspective of individuality. The state
of each individual in a population then can be regarded as
a Markov chain {Xn, n = 0, 1, 2}, where the integers 0, 1, 2
respectively represent the susceptible, infected and recovered
state. We define the probability that an infected individual
makes a transition into a recovered state as the recovery
probability, denoted as γ . The probability of transferring from
recovered to susceptible is the revivification probability α.
Assume that there are all susceptible individuals except one
individual being infected at the beginning of the epidemic
and others are all susceptible. The initial state of the first
infected individual is π0 = (0, 1, 0), and the initial state of all
susceptible individuals is π0 = (1, 0, 0) is. In the transition
process, for each node, the transition probability from the
infected state to the recovered state is P1,2 = γ , and the tran-
sition probability from the recovered state to the susceptible
one is P2,0 = α. The crux is the infected probability related
to the contacts to infected people. Namely, the probability
that a susceptible individual transfers into the infected state
is relevant to the degree and infected neighbor density of that
node in the network. Then we have the transition probability
of node j transforming from susceptible to infected

P0,1 = 1 − (1 − β) f ·ρ j (n). (4)

Hence, denote by d j that the infected neighbor number at
time step n following d j (n) = k jρ j (n). β is infected rate as
described above.

Having the above statements, we obtain the definition as
follows.

Fig. 1. State transition of SIRS model: The arrows indicate the transitions
from one state to another, where the transition probabilities are given. The
loop arrow indicates remaining staying in the present state without making a
transition of an individual.

Definition 2: The transition matrix Pj (n) of the susceptible
individual j at time step n is

Pj (n) =
⎡
⎣(1 − β)d j (n) 1 − (1 − β)d j (n) 0

0 1 − γ γ
α 0 1 − α

⎤
⎦ . (5)

Based on Def. 2, the epidemic state of an individual at n+1
can be obtained iteratively described as

πn+1 = π0 Pj (0)Pj (1)· · ·Pj (n) = πn Pn+1. (6)

Additionally, through the transition matrix, we notice that
d j (n) is a crucial element that affects the infected probability
of a node. Intuitively, the number of infected neighbors of
a node is relevant to its degree. Let the density of infected
individuals at n time step over the whole network be ρ(n)
numerically between 0 and 1. Intuitively, we have

E[d j (n)] = f k jρ(n). (7)

where E[d j (n)] is the expectation value of d j (n).
According to Eq. 7, if a node has a larger degree value,

the more infected neighbors it may connect to, which rises
higher risks of being infected. As an instruction, Fig. 1
explicitly presents the state transition of an individual in an
epidemic based on the SIRS model.

B. Modeling on Population Size of Different Epidemic State

As we know, the individual number in an epidemic state of
a population varies with the evolving epidemic. Neglecting the
birth and death of individuals in a short time scale, the fluctua-
tion of the individual number in each epidemic state depend on
the transitions between states and the migration of individuals.
Besides, we also take the migration of mobile people into
consideration. Queueing theory is introduced to explain the
mechanism of transitions between states and fluctuations of the
individual number of an epidemic state in detail. Furthermore,
the number of individuals in all the three states in our epidemic
model is regarded as a Markov Chain whose state space
is {0, 1, 2, · · · }.

1) Markov Queueing Network of SIRS: We hereby introduce
the queueing theory to an SIRS epidemic model to describe
the whole process explicitly. In a propagation process, there
are transitions between epidemic states and also the migration
among cities. Hence, we let a place, e.g., a city or a district
be an open Markov network where three epidemic states are
service centers. Each epidemic state is also described as a
sub-system in which, if customers are under service, they
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Fig. 2. An open Markov queueing network of SIRS model considering a
mobile population: Inside the dotted box is the system(an area), where there
are three solid line boxes representing service centers(an epidemic state is a
service center). Each service center has infinite servers. Arrows indicate the
transitions of individuals.

remain staying in a state. Analyzing the input and output
process of each state, the transition from S to I can be
interpreted as the removal from S while the arrival at I .
Analogously, the transition from I to R is the removal from I
and as well as the arrival at R. The transition from R to S is
part of the input of S and the removal from I , since there are
mobile individuals who arrive at S outside the system and a
certain portion of recovered individuals will leave the system
rather than return to S. The infected rate is denoted by β,
the recovered rate is γ , the input rate is λ, the output rate is α,
and the reviving proportion is p. For a better understanding,
the queueing system is visually illustrated in Fig. 2. We next
construct the system in detail by defining its basic elements
as follows.

Input and output. The input people from outside the
system can merely arrive at the susceptible service center and
is regarded as a Poisson flow with the parameter λ. The output
of the system stems from the decomposition of the Poisson
output flow of the R service center, which is a Poisson process
as well.

Mechanism of transitions. The input of the susceptible
service center S service center is a component of the input
of mobile people from the outside and part of recovered
individuals leaving R and becoming susceptible again, which
is a compound Poisson stream. The input process of infected
service center I is a Poisson process with a variable rate since
the input rate is related to the current number of customers
under I service center, which is called Queueing-Length-
Dependent. The output is regarded as a Poisson stream as
well. The input flow of the infected service center R is the
output stream of the I service center.

Service mechanism. All service centers S, I and R are
characterized by infinite servers numerically from 0 to ∞. And
the service time of each customer is independent identically
distributed in all three systems. While the concrete time dura-
tion of service is different. The distribution service time of S is
taken as an exponential distribution with service rates related
to the number of individuals in I service center. The service
time at I service center is independent identically exponential
distributed with the same parameter γ of Poisson process. The
service time at R service center is also independent identically
exponential distributed with the same parameter α of Poisson
process.

Queueing Discipline. For our proposed queueing systems,
by virtue of infinite servers, new customers will accept service
once it arrives at any service center. Consequently, the waiting
time is avoided and the queueing discipline is trivial.

In the above mechanism, mobile people migrating to a
place are all susceptible which is reasonable during the
epidemic-prevent period, and the input number of people each
time unit is random therefore following a Poisson distribution.
While for the whole system, the output of it is all from the
R service center since only recovered people are allowed to
leave the place. When an individual enters the system from
the outside, it directly arrives at S service center, then there
is a probability that remains staying in S or transferring to I
service center (be infected). An individual at I has the proba-
bility to transfer to the R service center. While individuals
at R have two choices, leaving the system or return to S
again. The recovery of infected nodes occurs stochastically
which suits the Poisson process, therefore, the input of R
system is a Poisson flow. The transition from R to S occurs
randomly and the probability of occurrence is relatively small,
the Poisson process with a small rate is therefore appropriate
for that flow. In terms of service mechanism, the number of
individuals in an epidemic state is noticeable without limit
and all coming individuals are allowed to join the service
center. Hence the number of servers in each service center
is endless. Susceptible individuals being infected is related to
the density of infected individuals. Accordingly, the staying
time in S service center depends on the number of customers
under I service center. Individuals keep in the I and R service
center for some time and then leave, which occurs randomly,
determining the service time at both the I and R follows an
exponential distribution.

Then we discuss the underlying network where nodes rep-
resent individuals and edges between nodes indicate contact
between individuals. We display the process of individuals
joining in and leaving the system in the perspective of net-
works as follows.

Initialization of networks. The initial network is given an
already constructed WS small-world network with a certain
quantity of nodes defined by the scale n0, the number of initial
neighbors k, and the reconnection probability p.

Connection and disconnection. Mobile people floating
to or leaving a city corresponds to the arriving and leaving
process of nodes in the network. For any node coming with m
edges, it joins the network by m edges connecting existing
nodes. Assume the connection to a node occurs randomly
and the nodes in the network are distributed randomly. The
connection probability is equally 1/n for any node in the
network where n is the total number of nodes at that moment.

Termination. The terminal time is set to T large enough
for being stationary. The network ends evolving once the time
reaches T .

The initial population network of an area can be regarded
as a small-world network that is static and becomes dynamic
because of migration. The above mechanism of a network
describes that in the real situation, susceptible individuals enter
an area and contact several existing individuals randomly, and
recovered individuals can leave the area and break all their
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contacts. During this process, both of the structure and the
scale of the network change with time.

Based on these indications, we next analyze the model
focused on the number of individuals in three states.

2) Numerical Study on Individual Number in Staionary: As
described above, the number of customers at three service cen-
ters can be respectively regarded as a continuous-time Markov
Chain, {S(t), t ≥ 0}, {I (t), t ≥ 0}, {R(t), t ≥ 0}. For all three
epidemic states, the future number of individuals, given the
present number and all past number of infected individuals
depends only on the present number and independent of the
past, satisfying P{I (t + h) = i |I (t) = j, I (u) = i(u), u ≤
0 < t} = P{I (t + h) = i |I (t) = j} for I (t), which is
also suitable for S(t) and R(t). Then we take {S(t), t ≥ 0},
{I (t), t ≥ 0}, {R(t), t ≥ 0} as Markov chains all with state
space {0, 1, 2, · · · }.

The initial condition is {S(0) = 0, I (0) = 1, R(0) = 0}.
And the susceptible individual number increases by 1 due
to the revivification of a recovered individual becoming sus-
ceptible. A susceptible individual being infected leads to the
decrease of susceptible number. Denote P{I (t +h) = i |I (t) =
j} by Pi, j (t, h) as the probability that from state i at time t to
j at time t +h. Besides, since we study the epidemic model on
homogenous networks, we take the average degree denoted as
k of the network as the degree value of nodes. Then we have
transition formulae demonstrated in Theorem1.

Theorem 1: The transition probability of the susceptible
individual number S(t), the infected individual number I (t)
and the recovered individual number R(t) are respectively

pS
i j (t, h) =

⎧⎪⎨
⎪⎩

[λ + r(t)pα]h + o(h), j = i + 1

s(t)i(t) < k > βh + o(h), j = i − 1

o(h), ‖ j − i‖≥2,

(8)

pI
i j (t, h) =

⎧⎪⎨
⎪⎩

s(t)i(t) < k > βh + o(h), j = i + 1

i(t)γ h + o(h), j = i − 1

o(t), ‖ j − i‖≥2,

(9)

and

pR
i j (t, h) =

⎧⎪⎨
⎪⎩

i(t)pγ h + o(h), j = i + 1

r(t)αh + o(h), j = i − 1

o(h) ‖ j − i‖≥2.

(10)

where s(t), i(t), r(t) respectively represents the number of
susceptible, infected and recovered nodes at time t , p is the
ratio of recovered nodes entering S state at time t .

Proof: The input of S service center is the Poisson flow
of the migration of mobile individuals. It is along with part
of the output of R which also follows a Poisson process. The
input of S is a compound Poisson flow. Then, we first deduce
that the probability of one node leaving R and entering S
is

∑r(t)
m=1(e

−pαh)r(t)−1·(1 − e−pαh) = r(t)pαh + o(h). The
probability that one node come from outside the system is
λhe−λh . One node coming to S originate either outside the
system or R. Therefore, in the light of Taylor’s formula,

the probability that one node enters S is

P S
in = (e−λt + o(h))·(r(t)pαh + o(h)) + λhe−λh ·(e−αh)r(t)

= [1 − λh + o(h)][r(t)pαh+o(h)]+λh[1 − λh + o(h)]
· [1 − pαh]

= [λ + pr(t)α]h. (11)

Consequently, the input of S can be regarded as a compound
Poisson flow with the rate λ+ pr(t)α. Then the probability that
the service is unfinished is e−ik (t)kβh . In addition, the proba-
bility that n nodes come to S and exactly n − 1 nodes leave
is o(h). Hence, according to above calculation and Eq.11,
we yield the transition probability of S(t)

pS
i,i+1 = (λ + r(t)α)he−(λ+r(t)α)h·e−ik (t)kβh + o(h)

= (λ + r(t)α)h[1 − (λ + r(t)α + ik(t)kβ)h + o(h)]
= (λ + r(t)α)h + o(h). (12)

Analogously, the probability that none of the nodes become
susceptible during h is e−(λ+r(t)α)h. The probability of any
node finishes the service and leaves S is

P S
out =

s(t)∑
m=1

(e−ik (t)kβh)s(t)−1 · (1 − ei
k(t)kβh)=1 − eik (t)kβh .

(13)

The probability that n(n ≥ 2) nodes leave S and exactly
n − 1 nodes come is o(h). Together with Eq.13, we obtain

pS
i,i−1 = e−(λ+r(t)α)h(1 − eik (t)kβh) + o(h)

= sk(t)ik(t)kβh + o(h). (14)

With the sum of probability being 1,

pS
i,i = 1 − (λ + r(t)α + sk(t)ik(t)kβ)h + o(h). (15)

We next deduce the transition formula for I (t). The input
of I is the output of S leading to the probability that one node
comes to I is s(t)i(t)kβh +o(h), which is deduced above and
the probability of none of nodes finish the service during time
h is e−γ h = 1 − γ h + o(h) yielding

pI
i,i+1 = [s(t)i(t)kβh + o(h)][1 − γ h + o(h)]

= s(t)i(t)kβh. (16)

The probability that one node finishes the service and leaves
I is

∑i(t)
m=1(e

γ h)i(t)−1·(1 − eγ h) = i(t)γ h + o(h) and the
probability that none of the nodes enter I is equal to the
probability that none of the nodes in the S service center finish
the service, which is noted as e−ik (t)kβh . Hence, we have

pI
i,i−1 = [i(t)γ h + o(h)]e−ik (t)kβh

= [i(t)γ h + o(h)][1 − ik(t)kβh + o(h)]
= i(t)γ h + o(h). (17)

The rest demonstration of the transition formula of R(t) is
essentially the same as the above proof.

Above all, the results follow.
Th.1 presents the transition probability of the individual
number of three states. It is worth noting that the transition
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probability is not the epidemic transition probability but the
probability of the population size changing.

Theorem 2: The expectation of the population in three
states under stationary is respectively E[S] = γ

βk , E[I ] =
λ

γ (1−p) , E[R] = λ
α(1−p) .

Proof: When the process goes in a stationary regime,
the input rate and the output rate of a state are equal. Suppose
the expectation value of the number of susceptible, infected
and recovered individuals under stationary are E[S], E[I ] and
E[R]. According to Th. 1, we get the following equilibrium
equations: ⎧⎪⎨

⎪⎩
λ + pαE[R] = E[S]E[I ]βk

E[S]E[I ]βk = γ E[I ]
γ E[I ] = αE[R].

(18)

Solving Eq. 18, we attain the expectation of the number of
individuals of the three states.

The results follow.
Hence, we come to the following important conclusion.

Eq. 18 combined with Th. 1 reveals the relation between the
change of the population size in three states and the transition
among the states. In detail, the number of individuals in the
susceptible state decreases by 1 indicating one individual trans-
fers from the susceptible state to the infected state, while it
increases by one because of an arrival which is the compound
Poisson flow composed of the migration to the area and part
of recovered individuals turning susceptible. For the infected
state, the population decreases when an infected individual
transforms into a recovered state. The infected population
increases by one owing to a transition from the susceptible
to the infected state. Analogously, a leave from the recovered
state contributes to one decrease of population, and a transition
from infected state leads to an increase.

According to the above theoretical results, we will carry out
real experiments to further verify our model.

III. SIMULATION

In this section, we simulate the propagation process based
on proposed models. In the first sub-section, we simulate the
transition among epidemic states according to the individual
model and investigate the relation between the limited distrib-
ution of epidemic states and the degree of nodes. The second
sub-section based on the whole population model showcases
the properties of the system, e.g., the number of individuals
and the limited distribution of the number of individuals in
S, I, R respectively.

A. Transition of Epidemic State

The limited distribution of state S, I, R indicates the proba-
bility of individuals being at S, I, R correspondingly. In other
words, it can be regarded as the proportion of the number of
individuals in three epidemic states. We reveal that the prop-
agation process will be stationary and the limited probability
of being infected is related to the degree of a node standing
and also the protection degree of an individual. Moreover,
according to the transition matrix, the propagation process is

Fig. 3. The infected probabilities with different protection degrees: We
take the average value of the infected probability of individuals within the
same-degree group. The protection degree with μ = 1, μ=2, and without
protection degree is respectively denoted by the blue circle, the green square
and the red triangle plot. The protection degree lower the probability of being
infected, and larger value of μ leads to smaller infected probability.

decided by the infected rate, recovered rate, the revived rate,
and especially the protection degree, hence we set different
values for the parameter of the Poisson distribution μ.

The underlying network is a WS small-world network
whose distribution of degree follows a Poisson distribution
and the average path length is short, thus it fits the population
network in an area. A WS small-world network is constructed
by randomly reconnecting a regular network in which each
node has k neighbors both on the left and right sides. In our
experiments, the network is initialized by networkx in Python,
where the scale of the network is set to be 1000, each vertex
is connected to 5 neighbors on the left and right respec-
tively, and the reconnection probability is 0.5. And we utilize
numpy.random.poisson() function to generate protection
degrees. The experiments are carried out by setting different
values 1 and 2 for the parameter of Poisson distribution and
we make a comparison with the propagation process where
individuals without protection degrees. The terminal time is
set to be 1500 that is long enough to let the whole process be
stationary. As time passes by, we record each individual’s state
at each time step when the system is stationary. Eventually,
we calculate the mean value of frequencies of being at I
states of nodes classified by degree k to evaluate the level
of epidemics.

Since networks are generated randomly in each experiment,
the degree are not the same as we can see from Fig. 3, the lines
have different degree values on the horizontal coordinate.
Hence, we focus on the mean values of infected rate of
degree between 6 and 16. The red triangle plot indicates the
limited probability of being infected without the protection
degree which lays above the other two lines, which indicate
the individual protection degree deduce the probability of
being infected. The blue circle plot is the infected proba-
bility of individuals with the protection degree following a
Poisson distribution whose parameter is 1 while the green
square plot is the infected probability of individuals with
Poisson parameter 2. The green plot lays below the green
one, indicating that larger intensity of Poisson distribution
for protection degree reduces the limited infected probability.
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Fig. 4. The degree distribution of evolved network with different initial
edges of each node: The edges of each node in the initial regular network are
set to be 4, 8, 16 and the node joining the network with edges m = 4. The
stationary distributions are identical to each other though the initial edges is
different.

Furthermore, three plots have an upward tendency as the
degree value increases, which indicates a larger degree value
causes a higher probability of being infected. Consequently,
the simulation results can give suggestions that a higher level
of protective awareness among people leads to a lower risk of
being infected and fewer contacts to people also decrease the
infected probability.

B. Queueing System of SIRS

The following simulations concentrate on the number of
individuals in each epidemic state. We first present the varying
number of three states with time going where the system will
be stationary when time is large enough. Besides, we illustrate
the individual number distribution with different parame-
ters. In these experiments, we apply np.random.ex ponential
function to generate time series as the staying time for indi-
viduals in three epidemic states. And we update the number
of individuals S(t), I (t), and R(t) whenever an event occurs.
Time is set to be large enough for stationarity.

Primarily, we demonstrate the degree distributions of the
evolving network. The initial network is a small-world network
described above in Sec. III-A. In the following experiments,
the initial scale of the network is set to be 1000, a number
of nearest neighbors k is set to be 4 and the reconnection
probability p is set to be 0.7. To analyze the influence of k on
the output network constructed by our proposed model whose
edge number m of a newly arriving node coming is set to be 4,
we let the initial parameter k be 4, 8, and 16 and present the
degree distributions P(k) in Fig. 4. As we can see, the degree
distributions of three networks with different initial edges have
the same mode and they are all still homogenous. Furthermore,
the average degree calculated is 5 via the degree distribution
when the network is stationary, which demonstrates that the
distribution of the output network is independent of the initial
number of edges k.

The queueing system of the epidemic process is decided by
five parameters, the input rate λ, the infected rate β, the output
rate α, the recovered rate γ , and the reviving proportion p.
In the initial system, only one is an infected individual and

others are susceptible. Let time be 4000 which is long enough
for the propagation process to be stationary.

The individual number varying with time is shown in Fig. 5,
where plots of the number of individuals all tend to be
stationary, fluctuating around a certain value after some time.
In all sub-figures in Fig. 5, the blue curve denotes the number
of S varying with time, the red curve indicates the number
of I , and the green one indicates the number of R. And we
can see that in all these sub-figures, during a very short period
from the beginning, the susceptible individuals grow rapidly
while the infected and recovered individuals increase slowly.
Then, the number of susceptible individuals decrease abruptly
while at the same time, the number of individuals in infected
and recovered state both increase. After t=1500, the number
of individuals in three states becomes stationary. Fig. 5(a)
displays the system with λ=3, β=0.001, γ =0.7, α=0.8, and
p=0.995. The individual number in three states S, I and R
eventually approaches 200, 750, and 850 approximately.

The system shown in Fig. 5(b) is set α = 1.6 which is twice
larger than that in Fig. 5(a), other parameters are the same.
We can see that the recovered individual number fluctuates
around 400 which is about half of the number compared to the
system in Fig. 5(a). This indicates that a larger α results in less
recovered individuals in the system. Fig. 5(c) illustrates the
system with a twice higher input rate that is λ=6. The number
of infected and recovered individuals respectively fluctuates
between 1500 and 1750, which are twice higher than those
in Fig. 5(a). The number of susceptible individuals in Fig. 5(d)
is halved and converges to 100 approximately. In Fig. 5(e),
the stationary number of susceptible individuals gets doubled,
surging to above 300 in inverse with the stationary number
of I decreasing to above 400, half of that in Fig. 5(a).
And finally, we can see from the number of infected and
recovered individuals in Fig. 5(f) both halved compared to
that in Fig. 5(a), fluctuating around 400 which is above the
number of I while below the number of R.

We next analyze unchanged curves in Figs. 5(a)-(e). The
susceptible individual numbers in 5(b), (d) and (f) are identical
to that in Fig. 5(a) which indicates α, λ is independent of S.
And the infected individual numbers in Figs. 5 (b) and (d)
are the same as Fig. 5(a), indicating that α and β have no
influence on the number of I . The recovered individual number
in Figs. 5(d) and (e) witness the same stationary value as that
in Fig. 5(a), which verifies the recovered individual number is
independent of β and γ .

For a better illustration, we calculate the average value of
individual number of three states when the system is stationary
and make a comparison to theoretical results. The weight wn of
the individual number n depends on the sum of its remaining
time. And we observe the number of individuals from tb =
3000 to te = 4000. We obtain the expected values of records
during this time via

E(x) = tn
tb − te

x, (19)

where tn is the time length of the period when the individual
number is n and ts − te is the total time. Besides, the standard
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Fig. 5. The number of individuals varying with time of the three states with different parameters: The figure respectively shows the influence of each
parameter on the individual number. Sub-Fig. (a) is set as λ=3, β=0.001, γ=0.7, α=0.8 and p=0.995. α, λ, β, γ and p are changed respectively from
(b)-(e).

TABLE I

THE RESULTS OF THE STATIONARY INDIVIDUAL NUMBER OF S WITH λ=3, α=0.8, p=0.995, < k >=5

TABLE II

THE RESULTS OF THE STATIONARY INDIVIDUAL NUMBER OF I WITH β=0.001, α = 0.8 AND < k >=5

TABLE III

THE RESULTS OF THE STATIONARY INDIVIDUAL NUMBER OF R WITH β=0.001, γ = 0.7 AND < k >=5

deviation of records is also calculated by

1

N

√∑
(x − E(x))2. (20)

We also calculate the absolute percentage error for a com-
parison between theoretical expectation and expected values

in simulations. The results are presented in Tabs. I, II and III,
which respectively presents the results of S, I and R. There
are three couples of (β, γ ) in Tab. I, four couples of (λ,
γ , p) in Tab. II and four couples of (λ, α, p) in Tab. III.
As we can see in the three tables, the simulation results are
in accord with theoretical results. The standard deviations in
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Fig. 6. The comparison of the S individual number distributions with different parameters: Five parameters influence the distribution of the individual number
of S differently. γ and β are deciding factors of S, where γ is proportional to the individual number while β works inversely. The initial setting is λ=3,
β=0.001, γ=0.7, α=0.8 and p=0.995. Sub-Figs. (a)-(e) display the distributions based on the original parameters changing α, λ, p, γ and β orderly.

Tab. I are less than 0.123, and the standard deviations are less
than 0.128 and 0.131 respectively in Tabs. II and III. The small
deviation indicates that the number of individuals in three
states is around the stationary value in a small range. And the
maximum value of absolute percentage errors is respectively
1.9%, 3.5% and 3.7%, which demonstrates the accuracy of our
theoretical expectation described in Th.2.

In addition, we illustrate the distribution of the number
of individuals in S, I and R respectively given by different
parameters. Different values are also set for α, γ , λ, β and
p displayed in Figs. 6, 7 and 8, where the results present an
obvious normal distribution in form.

In Fig. 6, we demonstrate the distribution of individuals
of S. As we proved in above Th. 2, the expectation of
the stationary number of S is independent of λ, α and the
proportion p, which results in that they are identical distributed
in Figs. 6(a), (b) and (c). And in Fig. 6(d), the distribution
marked with green circles is wider than the blue one, and
the distribution marked with red crosses is the widest that
indicates the largest variance. Besides, the blue-scatter diagram
with the small λ is on the left side, whose mode is in the
middle of 50 and 100, while the red distribution with the
largest λ is rightmost whose mode is close to 300. The green
scatters with the intermediate value of λ is between the other
two distributions. This indicates that the larger value of γ is,
the larger number of the susceptible individual is. Fig. 6(e)
shows a different relation between the distribution and the
parameter β, compared to γ , which proves that the large value

of the infected rate β, however, leads to the decrease of the
susceptible individuals.

The distributions of individuals of I are shown in Fig. 7.
As is illustrated in Figs. 7(a) and (b), the distributions are
mostly overlapped and the number of individuals of peak
value is identical, indicating that the individual number of
I is independent of the output rate α and the β. While
in Fig. 7(c) we can clearly see the positions on the horizontal
ordinate corresponding to the peak values of the distribution
are different. In detail, the expectation value of distribution
with γ =0.35 marked by the blue triangle is between 1500 and
1750, while the distribution with γ twice higher than the
blue one has a peek-relevant value between 750 and 1000,
closer to 750. And the distribution with γ =3.5 is marked
by red crosses, whose value corresponding to the peek is
between 500 and 750, closer to 500. This indicates the infected
individual number is inverse proportion to γ . In contrast, from
Fig. 7(d), the individual number values of the peak are the
same as that in Fig. 7(c) corresponding to λ that are 6, 3,
1.5, showing a in-proportion relation with λ. According to
Fig. 7(e), the distribution with the smallest p is leftmost while
with largest p is rightmost, verifying that a larger value of p
contributes to more infected individuals.

Fig. 8 displays the distribution of the individual number in
R. According to Fig. 8(a), α=1.6 corresponds to the position
of the peak on the horizontal ordinate is lower than 400,
α=0.8 corresponds to lower than 800, and the value on
the horizontal ordinate of the peak with α=0.4 get doubled
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Fig. 7. The comparison of the I individual number distribution with different parameters: Five parameters influence the distribution of the individual number
of S differently where λ and p are proportional to the individual number while γ is inversely proportional to that. The initial setting is λ=3, β=0.001, γ=0.7,
α=0.8 and p=0.995. Sub-Figs.(a)-(e) display the distributions based on the original parameters changing α, γ , λ, β and p orderly.

Fig. 8. The comparison of the R individual number distribution with different parameters: Five parameters influence the distribution of the individual number
of S differently. λ and p are proportional to the individual number while α has an inverse effect. The initial setting is λ=3, β=0.001, γ=0.7, α=0.8 and
p=0.995. Sub-Figs.(a)-(e) display the distributions based on the original parameters changing α, γ , λ, β and p orderly.

approximately, matching the value between 1400 and 1600,
which indicates α is inverse proportion to the number of R.
In addition, the distribution with α=0.4 has a bigger width

than that with α=0.8 and α=1.6, whose variance is larger.
On the contrary, the distribution with different λ and p is
shown in Figs. 8(b) and (c) where λ=1.5, 3, 6 corresponds
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to the value between 250 and 500 closer to 500, the value
between 750 to 1500, closer to 750 and value approaching
1750 approximately, and p=0.990, 0.995, 0.997 corresponds to
400, 800, 1200, both of which presenting a positive influence
on the individual number of R. Large values of λ and p cause
the distribution is on the right of the ordinate, namely, acceler-
ating the number of individuals of R. Besides, the distributions
in Figs. 8(d) and (e) both are overlapping, which indicates that
the distribution of the individual number in R is independent
of γ and β.

Consequently, the above simulation results agree with the
theoretical results as described in Th. 2. Besides, in the light
of the individual protection degree that we proposed in the
first model, people enhance the awareness of protection and
take measures to protect themselves, e.g., wearing masks or
avoiding crowds can also suppress the epidemic level. And
according to the second model reducing the input rate λ and
the reviving probability p can make the infected individ-
ual number decreasing, regimentation, e.g., strengthening the
administration of transient population of an area thus should
be encouraged to inhibit the epidemic.

C. Simulation of a Second Wave of COVID-19 in Zhengzhou
In this subsection, we simulate the number of infected

individuals in Zhengzhou, Henan province, China by utilizing
the SIRS population model. According to our proposed model
based on the queueing system, the infected individual number
is the number of individuals in the I service center. In order to
control the second wave of epidemics in Henan, the specific
areas are under restriction, where people are allowed getting
into the area but leaving only for essential trips. Therefore,
we simulate the infected individual number in the restricted
area which is regarded as an open Markov queueing network
in our population model. Based on the data set of COVID-19,
the second wave in Henan began on 31st July when there
were domestic infected cases appearing. The restriction for
the high-risk area began on 3rd August. We take the time
window from 6th August to 28th August which lasts 23 days,
and mainly observe the epidemics during this time window.
We set the t0=0 and the termination T =22. It takes time to
be diagnosed, which leads to the real data delayed, while our
theoretical results are timely, hence, we shift the theoretical
results backward in time when comparing them.

We next analyze the real situation and apply our model
to real data. Most confirmed cases are in Zhengzhou, thus
we take the data of Henan province as that of Zhengzhou.
In the real situation of the case in Zhengzhou, most people
have been vaccinated, hence, a large fraction of individuals
are in the recovered state. However, the immunity got from
the vaccine is not absolutely valid for the virus especially
for the mutated ones. There is still the probability to get
infected once contacting the infected individuals. Therefore,
we regard all individuals in the area as susceptible individuals
with a quite large protection degree to describe the situation
that being vaccinated but not absolutely valid. Additionally,
we suppose that the individuals involved are close contacts
numbered 2515 which compose the underlying network of
the epidemics in the high-risk area, and suppose all these

Fig. 9. The comparison between real data and theoretical results: The red
cross plot is the real infected individual number during the time window, and
the blue circle plot is the theoretical infected individual number according to
the population model. The two curves have the same trends on the whole.

individuals are in the restricted area. For the parameters in the
population model, we then set appropriate values for them.
In terms of the network setting, the population network is
regarded as a small-world network with the total individual
number n=2000 and the initial nearest neighbor are both one
on the left and right side. We suppose that the fraction p
of recovered individuals being susceptible again is 0 during
the second wave, then α is the output rate excluding the
reviving flow. The input and output rate are set to be very
small due to the high risk, especially for the output rate is
even smaller than the input rate under restriction, and we set
λ=0.01 and α=0.005. The protection degree is set to follow
a Poisson distribution with the intensity μ=1 which is the
expectation. The infected rate β becomes βμ seven days after
the first individual being infected. The recovered rate γ is set
to be 0.55.

The real data and theoretical results are illustrated in Fig. 9.
The red cross plot denotes the infected individual number
(daily stored confirmed cases), and the blue circle plot denotes
the theoretical infected individual number based on our model.
We can see that the two plots have a similar trend. To further
make a comparison between the real data and the theoretical
results, we introduce three methods of comparing the similarity
of two plots of the infected individual number, which are
the Pearson correlation coefficient, the cosine similarity, and
the first order temporal correlation coefficient (CORT). The
Pearson correlation coefficient is expressed as

ρ = E[(X − E(X))(Y − E(Y ))]
SX SY

, (21)

where X denotes the real data, Y denotes the theoretical
results, E is the expectation function and S is the standard
deviation. The value of the coefficient is between −1 and 1,
where 1 presents a totally positive linear correlation, −1 indi-
cates a totally negative linear correlation, and 0 indicates no
linear correlation.

The cosine similarity is expressed as

cos =
∑n

i=1 Xi Yi√∑n
i=1 X2

i

√∑n
i=1 Y 2

i

, (22)
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TABLE IV

THE SIMILARITY OF REAL DATA AND THEORETICAL
RESULTS UNDER THREE MEASURES

where Xi is a component of the real data vector X , Yi is a
component of the theoretical results vector Y . The value of
the cosine similarity is between −1 and 1, 1 indicates that
the vector angle is 0, and −1 indicates that the vector angle
is 180.

The CORT is expressed as

C O RT =
∑T −1

t=1 (Xt+1 − Xt )(Yt+1 − Yt )√∑T −1
t=1 (Xt+1−Xt )2 ·

√∑T −1
t=1 (Yt+1−Yt )2

, (23)

where Xt is the real infected individual number at time t , and
Yt is the theoretical infected individual number at time t . The
value of CORT is between −1 and 1, where 1 presents the
same trend, −1 indicates the opposite trend, and 0 indicates
no temporal correlation.

The real data is recorded by the time unit of one day, which
is a discrete sequence. Thus, we also take our theoretical
results as a discrete sequence divided by the same time unit.
The comparison is demonstrated in Tab. IV, from which we
can see that the Person coefficient is 0.800, indicating a strong
linearly dependent relation between the real data and theoret-
ical results. Besides, the cosine similarity is 0.987 which is
quite high. The value of CORT is 0.656 which is not as large
as that of the Pearson coefficient and the cosine similarity the
reason for which is that our theoretical results varying with
fluctuation, while it is yet over 0.5. These verify that the real
data and the theoretical results agree with each other.

IV. CONCLUSION AND OUTLOOK

In this paper, we study the SIRS epidemic model from two
perspectives based on statistical methods. In the first model,
in terms of individual, we introduce the individual protection
degree considering the protective awareness in an epidemic
and obtain the numerical value of stationary probability that an
individual is in S, I , and R state. In the second model regard-
ing the individual number, we consider the migration of mobile
people. A Markov queueing system is constructed to model
the migration of people and transitions between epidemic
states. Distinct from the number of individuals converging to
a constant value obtained by primer studies, we achieve that
the individual number in each epidemic state is convergent
in probability by demonstrating the limited distributions by
simulations and also obtain the expectation value. Moreover,
the protection degree suppresses the epidemic level according
to our model and the impact of parameters in our model, e.g.,
the input rate of a place and the recovered rate of infected
people have a strong influence on the individual number,
which inspires us to provide some suggestions for epidemic
controlling theoretically.

Nevertheless, there are still some issues to be further
addressed. For heterogeneous networks, it is complicated to

give the concrete expression to generalize the increments of the
number of individuals varying with time. Analytical solutions
for the limited probability of nonhomogeneous Markov Chain
have been a tough problem all the time. Besides, for practical
applications, there is a requirement to apply our population
model to fit realistic data. These issues will be further studied
in our future work.
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