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ABSTRACT

The preferential attachment of the Barabasi-Albert model has been playing an important role in modeling practical complex networks. The
preferential attachment mechanism describes the role of many real systems, which follows the characteristic “the rich get richer.” However,
there are some situations that are ignored by the preferential attachment mechanism, one of which is the existence of the limited resource.
Vertices with the largest degree may not obtain new edges by the highest probability due to various factors, e.g., in social relationship networks,
vertices with quite a lot of relationships may not connect to new vertices since their energy and resource are limited. Hence, the limit for
degree growing is proposed in our new network model. We adjust the attachment rule in light of the population growth curve in biology,
which considers both attraction and restriction of the degree. In addition, the unaware-aware-unaware opinion diffusion is studied on our
proposed network. The celebrity effect is taken into consideration in the opinion diffusion process.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0087149

Since the scale-free network model was proposed, causing a sen-
sation, network modeling has been studied by a lot of researchers.
The purpose of studying network modeling is to properly build
more appropriate network models for fitting practical networks.
We establish an evolving network model considering limited
resources for the degree of growth and propose the mechanism
for network modeling in light of the population growth curve in
biology. In addition, the UAU (Unaware-Aware-Unaware) opin-
ion diffusion is investigated on the limited resource networks,
where the celebrity effect is taken into consideration in the dif-
fusion process. We extend the UAU diffusion model by adjusting
the affected rate to a value depending on the degree value, in
which a vertex is more likely to be aware influenced by its neigh-
bor with a large degree. Through the Markov chain method, the
diffusion threshold is analyzed. In various simulations, the degree
distribution of our network is presented. The awareness frac-
tion and the theoretical threshold based on different diffusion
processes are also demonstrated.

I. INTRODUCTION

In recent years, the development of information technology has
opened an avenue for complex network research. Network modeling

and its dynamic propagation have never been valued by virtue of big
data. Complex networks are applied for research in various fields,
e.g., the biology protein network,' the transportation network,” and
the power grid.” For better understanding of the structure and prop-
erties of real networks, a lot of network models were proposed to
model and simulate lots of practical networks.

Watts and Strogatz first proposed the small-world networks
featuring large clustering coefficient and low average path length.*
Soon after, the BA scale-free network model was established by
Barabasi and Albert.” The connection mechanism in the BA model
allows vertices with a larger degree to obtain more degrees with a
higher probability, which is called preferential attachment. This con-
nection mechanism explained the Pareto principle theoretically, and
the BA scale-free model caused a sensation in the complex network;
then, a great deal of work regarding network modeling emerged.
Based on the small-world network, its topology properties were
further studied by the mean-field method.” As an extension of scale-
free networks, a local-world evolving network was proposed, which
demonstrates a degree distribution between power-law and expo-
nential scaling.” In addition to static networks, dynamic networks
were established by lots of researchers. Adaptive networks arose and
were applied in a large variety of fields.” A time-varying network
defining the activity potential for each node’ was proposed, and its
further work was investigated in Ref. 10, where a continuous-time
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discrete-distribution method was established to investigate the epi-
demic spreading. Later, temporal networks were proposed, in which
edges are not continuously active.'’ From a stochastic perspective,
an evolving network was constructed by a novel mechanism apply-
ing the Poisson process.'” The degree distribution of a network with
the network size varying with time was further studied.”” In addition
to evolving network based on the stochastic process, the deletion
mechanism was discussed specifically, which considers the heritable
feature of node deleting.'* These models consider the time-varying
feature of networks. Additionally, by virtue of more access to real
data, multilayer networks appeared, taking on a multiplex character
of systems in real life."” An exponential random graph model showed
that interest group influence reputations vary locally in multiplex
networks.'

Based on various network models, dynamic studies like the
epidemic spreading and opinion diffusion have been discussed on
all sorts of networks. Epidemic spreading was studied on scale-free
networks'”'® and the researchers presented that the epidemic thresh-
old was absent in scale-free networks."” Later, dynamics were also
studied on layered networks,”’ temporal networks,”' etc., investigat-
ing the impact of the network structure on dynamics. In addition,
dynamic properties of epidemic propagation were also studied on
weighted networks.”” Recently, dynamics on multiplex networks
have gained much attention, e.g., a novel epidemic model based
on two-layered multiplex networks reveals the influence of preven-
tive information on epidemic prevalence,” and studies on multi-
plex demonstrated that the link overlap facilitates the viability and
mutual percolation.”* Researchers also presented that the infected
rate in multiplex networks is higher than that in isolated networks.”
In addition to epidemic spreading, diffusion of opinion was also
studied on the top of multilayer networks’® and two-layer intercon-
nected networks.”” In order to fit situations in real life, reality factors
were also studied in the opinion propagation. The community struc-
ture of social networks was considered, presenting the influence
of the time-varying property of a modular structure on the infor-
mation propagation.”® Real-world collective phenomena were taken
into consideration in opinion propagation by constructing a two-
layered network to study the coevolution of opinion dynamics and
decision-making.”” Opinion leaders were considered in social conta-
gion processes.”” This pioneering work provides important insights
into network modeling and dynamics on networks.

However, there are still crucial issues on unfitting real-life
networks, e.g., ignoring the decreasing of networks, the disconnec-
tion of vertices, and the mechanism of connection. Though the BA
model proposes a preferential attachment, which contributes to the
heave-tail degree distribution, many networks in real life are not the
same case as the BA attachment mechanism because of the limited
resources. In other words, new vertices may not be connected to an
existing vertex with the largest degree by the highest probability.

Based on the BA network model, in this paper, we establish
a novel network model considering the limited resources for the
vertex attachment mechanism. We take the resources limit into con-
sideration and introduce a limited value to constrain the degree
growing in networks. The expression of preferential attachment is
adjusted, which includes the attraction and the resources limit of a
vertex. The probability that a vertex receives an edge from a new
vertex is decided by both the degree and the limit value. We also
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propose the disconnection mechanism that vertices break the edges
with neighbors by a certain probability. In addition, we study the
opinion diffusion on our proposed networks and investigate the
influence of limit value on the propagation process.

The organization of this paper is as follows: in Sec. I1, we display
the construction of the resource-limit network. In Sec. 111, we inves-
tigate the diffusion of opinions on this network. Simulations are
carried out to demonstrate the validity of our models and theorems
in Sec. I'V. Conclusions and future work are given in Sec. V.

Il. EVOLVING NETWORKS WITH LIMITED RESOURCES

Scale-free networks were proposed with the growth and the
preferential attachment properties, which follows a power-law
degree distribution. The mechanism of its preferential attachment
and its degree distribution presents the Pareto principle, i.e., the rich
get richer and the poor get poorer. While for many real networks,
there is always a limit for growth and attachment. In other words, the
degree of a vertex may not increase without limit, e.g., tutor-student
networks where a tutor is unable to supervise too many students
due to the limited personal energy and resources; therefore, it is not
always the same case that students are more likely to connect to the
tutor whose connections are the most. In fact, they are likely to con-
nect to those tutors whose connection number is in a middle level.
We next present our model in detail.

A. Preparation for modeling

Taking the resources limit for the growth of degree into con-
sideration, in this section, we establish a novel model of evolving
networks with the limited attachment mechanism. The probabil-
ity that a newly coming vertex connects to an existing vertex i is
not k;/ > k; any longer. In light of the curve of the population
growth in biology, we adjust the expression of IT of the preferen-
tial attachment mechanism. Without natural resources limit, the
population growth rate constantly increases with the population
enlarging, whose growth curve manifests a “J” shape. Under the
restriction of natural resources, the population growth rate increases
at the beginning and then drops, and it stops growing until the
growth rate becomes 0, in which case the growth curve presents
an “S” shape. The mathematical expression of the “S” type curve is
the differential equation that is ‘%’ = NM;; N where N denotes the
population size, M denotes the maximum size set for the popula-
tion. The differential equation, which is called the logistic equation,
depicts the growth rate varying with the population size when a lim-
ited size value is set to constrain the growth of the population. We
can see that when the population size reaches M, the growth rate
becomes 0. The growth rate reaches peak value when N is equal to
half of the value of M. This growth rate expression gives the rea-
son for the growth curve taking on an S shape. Based on this, the
expression of preferential attachment, which describes the limit for
the degree has a similar form to the logistic equation. In this case,
vertices with middle degree values are more likely to obtain edges
from a new vertex.
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B. Modeling of network with limited resources

In this subsection, we present the mechanism of the evolving
network with limited resources as follows. To propose our model, we
mainly describe four parts that are the initial network, the growth of
networks, the connection and disconnection, and the termination.

Initial network. There are a few m, vertices in the initial
network, connecting to each other randomly.

Growth of network. A new vertex with m; edges comes to the
network at each time step, which contributes to the growth of the
network. m,; edges of the new vertex will be connected to the existing
vertex in the network.

Limit setting. A maximum value M is set for limiting the
degree of a vertex. Vertices are called unsaturated when the degree
is below M while when the degree is over M they are saturated.

Connection and disconnection. The newly coming vertex
attaches to existing vertices (both saturated and unsaturated vertex)
via its m; edges. The probability that a new vertex connects to the
existing vertex i in the network depends on IT;. Particularly, satu-
rated vertices disconnect one of its neighbors by a certain probability
decided by IT; . The neighbors of a vertex are distributed uniformly;
hence, we suppose that a saturated disconnects one of its neighbors
randomly. Unsaturated vertices do not disconnect the edges with
their neighbors.

Termination. We set time T large enough for the termination.
Once time reaches T, the network ends up evolving.

Next, we focus on expressions I1; and II;. The logistic
equation describing the population growth is introduced and gives
important insight into the expression of 1] and I1;. We replace
the population size N with the degree of a vertex k; in the logistic
equation, then we have

dki k(M — ki)

—_— = (1)
dt M

Equation (1) can be regarded as a description of the degree growth
rate for vertex i in networks, which takes both degrees of a vertex
and the limit for growing into consideration. From the expression,
we can see that for unsaturated vertices with k; < M, it is positive,
while for saturated vertices with k; > M, it leads to a negative value.
In particular, it is equal to 0 when k; = M. According to the original
logistic equation in biology, the degrees of vertices with degrees less
than the limit value M increase, the degrees of vertices with degrees
equal to the limit value stop increasing, and those with degrees larger
than the limit value decrease. However, there is a difference from
the population growth that the vertices whose degree value larger
than resources limit value in our network model can still receive
edges from new vertices; thus, we take rw as the expression of
l'I,.+ of all unsaturated vertices. For the saturated vertices, we take
the minimum value of 1 among all the unsaturated vertices as
all the saturated vertices” IT} (where i denotes an unsaturated vertex
hereby) to avoid a negative value. Then, IT; for unsaturated vertices
is expressed as

S T

; i 2
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and l'lj+ for saturated vertices is denoted as

ki(M — ki) }
f——.

i €)

1] = min {
We then consider IT;, which is merely for saturated vertices since
only saturated vertices have the probability to break edges initia-
tively and is expressed as r% to avoid the case that IT;
is 0 with k; = M. Though IT;" and II; are similar in form, they
have different properties when considering the value of k;. Partic-
ularly, in the range of k; > M, Eq. (1) becomes negative and is a
monotonously decreasing function, which indicates that the larger
k; (k; > M) leads to the negatively smaller rate of disconnection.

I1} and II;, respectively, indicates the degree growth rate of
vertices and the disconnection rate of unsaturated vertices. Anal-
ogous with the BA model, we use a probability to describe the
connection and disconnection of vertices at each time step rather
than utilize a certain growth rate. Therefore, we let 1} and I1; nor-
malized to transform them into the probability with the range of
[0,1]. Then, we have the following definitions for P} and P; .

Definition 1. In the proposed network, the connection prob-
ability IT;" that vertex i obtains an edge from a new vertex is

Pt — ki(M — k;)
L Z,‘ki(M_ki),

where k; is the degree of vertex 7, and M is the limited degree value
for each vertex in networks.

According to Definition 1, saturated vertices have the least
probability compared to unsaturated vertices, and unsaturated ver-
tices whose degree reaches half of the limit value M have the largest
probability to gain degrees through newly coming ones. This makes
a difference to the BA network model in which the vertex with the
largest degree have the highest probability to be connected to a new
vertex.

Definition 2. For a saturated vertex i in the proposed net-
work, the disconnection probability IT; that it breaks the edge with
one of its neighbors is

(4)

_ k+ DM —k-1) 5)
Y+ DM =k = 1)

where k; > M.

Definition 2 presents the disconnection probability of saturated
vertices in networks. Distinct to those growth network models where
the degree of vertices increases all the time, we consider the case that
those saturated may break the connections to their neighbors due to
the limited resources.

For better understanding, we hereby demonstrate an example
of our proposed resource-limit network. The process of constructing
a resource-limit network according to the mechanism in Sec. II B
includes the network growth, the limit setting, connection and
disconnection, and the termination in detail.

To build the network, the settings are my =3, m =1, M =6,
and the termination T = 8. As shown in Fig. 1, at time t = 0, the
initial network is a random graph with three vertices connecting to
each other by a probability of 0.5. Specifically, there are two edges
in total, a vertex with two degrees, and two vertices with one degree.
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FIG. 1. An instance of an evolving network with limited resources: the figure dis-
plays a construction of an evolving network with limited resources according to
our model. Termination time is set as T = 8, and for each time step, the gray
vertex comes and attaches to an existing vertex by the probability expression we
proposed.

For each time step, a new vertex comes and connects to existing ver-
tices by the probability decided by I1;/ 3, I;. For instance, at t = 2,
the newly coming vertex connects to the vertices with k = 3 and
k = 1, respectively, by a probability of 0.286 and 0.179. At t = 4, the
newly coming vertex connects to the vertices with k = 4, 2, and 1,
respectively, by a probability of 0.222, 0.222, and 0.139, from which
we can see that the probability to connect to a vertex with k = 4 and
k = 2 is the same, presenting that vertices with the largest degree
may not connect to the new vertex by largest probability due to
the limited resources. After evolving some time, at t = 8, there is
one vertex with k = 5, one vertex each with k = 4, one vertex with
k = 3, and the others with k = 1. This instance helps understand the
concrete construction of the limited resource network model.

C. Analyses for the transition probability of degree

In this subsection, we deduce the expression of probabilities
that the degree of a vertex increases and decreases. The degree of an
unsaturated or saturated vertex can increase via obtaining an edge
from a new vertex. The degree of saturated vertices decreases by
initiatively breaking edges with neighbors, and the degree of unsat-
urated vertices decreases through being disconnected passively by a
saturated. Then, we have the following lemma.

Lemma 1. The probability Pj,_ that degree of vertex i (both
saturated and unsaturated vertices) increases by one is

n n—p
. 1
P;c,kﬂ:P?—E:(1_P:)P|:Ps_<l_za.)i| ’ Q)
- j s

p=0

the probability P, , that the degree of unsaturated vertex u decreases
by one is

n n—p
1
%HZI‘ZN*EY&?Q‘Za)} .0
— j sj

p=0
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and the probability P}
decreases by one is

n n—p
—p _p- I e
P, =P +(1 PS)Z:(I Py) |:PS (1 Zjasj)} )

p=0

(8)

Proof. Suppose that the vertex j denotes a saturated neighbor

of vertex i, and denote by A the adjacency matrix of the network.
Then, the probability P* of vertex i not being disconnected is

P =T] [1 — P, +P; (1 — Zjlasjﬂ =U (1 — Z:asj)'
©)

s

ag is the element of A denoting the connection between vertex s and
its neighbor vertex j. The first term to the right of the equation is
the probability that saturated neighbor j of vertex i is not involved in
disconnecting at this time step. The second term is the probability
that vertex j disconnects with its neighbors but vertex i is not chosen.

The probability of the degree of vertex i increasing by one is
equal to the probability that vertex i being connected with a new
vertex and not being disconnected by its neighbors, that is, P;°
multiplied by P*. Therefore, we get

P, =PP = P+]_[< ~ ) (10)
sj

Since unsaturated vertices lose degree passively by virtue of being
disconnected with their saturated neighbors, the probability of the
degree of an unsaturated vertex i decreasing is equal to the probabil-
ity that vertex i not being disconnected with its neighbors. Thus, we
have

i1 that the degree of saturated vertex s

1
P,‘:}klzl—P*zl—l_[<1—Zasj>. (11)

s J

The probability that the degree of a saturated vertex i descends
is equal to the probability that vertex i disconnects with its neigh-
bors actively or being disconnected with its saturated neighbors. The
probability of vertex i actively disconnecting with its neighbors is
I1;, and the probability of vertex i not being broken edges by its
neighbor is also P*. Then, according to the total probability formula,
we get

P, =P +(1—P)P

1
=P +(1-—-P 1-— . 12
D JU( E%) (12)

The results follow. U

Lemma 1 presents the probability of the degree increasing or
decreasing in terms of a vertex from a microperspective, which can
also be regarded as an expression for network evolving.

The degree of a vertex can be regarded as a discrete Markov
chain since the future degree of a vertex is independent of the past
degree and only depends on the present degree. Denote by the
Markov chain of the degree of vertex i {k(¢),t=0,1,2,...}, and
the state of it is 0,1,2,..., which is infinite, since the degree of a
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vertex can grow infinitely. Particularly, k(f) = 0 indicates no dis-
connections of the vertex to any other vertices at time t. Suppose
the probability that the degree is k at time step ¢ is Pi(f), based on
Lemma 1, we obtain the transition matrix of vertex degree k() as
follows.

Definition 3. For each vertex, the one-step transition matrix
H of the degree in the limited network is expressed as

1 0 0 0 0 0 0

H=|: = = - : : o L a3)
o 0 o0 Prio1 Prx Prin

According to Definition 3, we can obtain the expression of the
degree distribution iteratively. Suppose that Pi(¢) is the probability
that the degree of a unsaturated vertex is k at time ¢, and p(t) is a
vector whose elements are Pi(t), k = 0,1,2,.. ., then we get

p(t+ 1) = p(HH = p(0O)H . (14)

According to Eq. (14), the degree distribution of vertices can be cal-
culated iteratively by simulations. Above all, we demonstrate the
construction of limited evolving networks in detail and perform
analyses of the degree distribution by stochastic methods. Next, we
discuss the opinion diffusion on our proposed network.

I1l. OPINION DIFFUSION ON RESOURCE-LIMIT
NETWORK

In this section, we discuss the diffusion of the opinion on our
proposed limited resource network. The limited resource network
co-evolves together with opinions, i.e., the diffusion of opinion relies
on the network, which is evolving all the time. The influence of
the degree limit on the diffusion of opinions is mainly studied and
by applying the micro-Markov chain method, we also analyze the
threshold of the diffusion on the resource-limit network.

First, we briefly introduce the independent cascade model
based on which we study the opinion diffusion on networks. Ver-
tices are classified by aware (A) and unaware (U). Each vertex is
affected by one of its neighbors, which is independent of its other
neighbors. Each aware vertex affects its neighbors only once at a time
step. In addition, for most cases in real life, information or opinion
passes into silence after some time, we, thus, assume that there is a
probability that an aware vertex becomes unaware again.

Then, we introduce the opinion diffusion model based on our
constructed network. The Markov chain method is utilized to study
the opinion propagation process.

A. Markov chain of UAU and analysis of threshold

In this subsection, we study the opinion diffusion on limited
networks by the stochastic process theory. There are two states of
a vertex, i.e., unawareness (U) and awareness (A), which can be
taken as a Markov chain. Take the two states U and A as integers 0
and 1, which together compose the state space of the Markov chain.
Specifically, that a vertex is under 0 state indicates that it is unaware
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while under 1 state indicates that it is aware. For an unsaturated ver-
tex, it may be disconnected by its saturated neighbor according to
the mechanism of the resource-limit network evolving. Hence, the
structure of our proposed network has an influence on the opinion
diffusion due to the disconnection inhibiting the diffusion between
two vertices.

Primarily, we suppose that P)(¢) is the probability that vertex
i is unaware at time f, and P} (f) is the probability that vertex i is
aware at time t. Then, we display the transition rates in the opinion
diffusion. We consider two diffusion mechanisms where the affected
rate B are different in the two mechanisms. The typical one is that
for each vertex, the reviving rate of it transforming from 1 (A) state
to 0 (U) state is &, and the affected rate of it transforming from 0 (U)
state to 1 (A) state is 8. Another one is that the rate of each vertex
transforming from 1 (A) state to 0 (U) is also «, while the probability
of it transforming from 0 (U) state to 1 (A) is related to the degree
of its neighbors, expressed as

Zj aij

kmin '
where k,,;, denotes the minimum degree of vertices in the network
and B, is the minimum affected rate that vertices with the min-
imum degree possess. According to Eq. (15), an unaware vertex is
more easily affected by its neighbors with larger degree values than
those neighbors with smaller degree values. This describes the vari-
ety of affecting abilities among vertices. A larger degree of vertices
leads to a larger affecting ability, as a large degree indicates a large
impact in real life. Then, we present the transitions between two
states in Lemma 2.

Lemma 2. Denoting by the adjacent matrix of the limited
network A and taking ]_[J’.L1 a;P; Bi as ri(t), the probability of ver-
tex i being aware P} (t + 1) and unaware P(t + 1) at time t + 1 is,
respectively,

:Bi = ﬁmin (15)

Pi(t+1) = P;(H(1 — ) + PX(t)ri(p),

(16)
PX(t+1) = P!(ha + P°(1)[1 — ry(D)].

Proof. We assume that r,(¢) = ]_[;‘zl aijP].l Bi is the probability
of vertex i becoming aware affected by its neighbors at time ¢. The
probability that vertex i is aware at time f + 1 is equal to the prob-
ability that vertex i is aware not reviving to be unaware at time f,
denoted as P! (£)(1 — «), or vertex i is unaware becoming aware by
its neighbors at time ¢, denoted as P?(#)r;(t). Then, according to the
total probability formula, the probability P} (t 4 1) that vertex i is
aware at time ¢ + 1 can be expressed as

Pi(t+ 1) = P;(H(1 — ) + PX(t)ri(2). (17)

Analogously, the probability that vertex i is unaware at time ¢+ 1
is equal to the probability that a vertex is unaware keeping its state
next time at time ¢, denoted as P! (£)[1 — r;(f)], or the vertex becomes
aware at time ¢ becoming unaware next time denoted as P{a. Then,
we have

PPt +1) = P (o + P ()[1 — ri(D)]. (18)
The results follow. O

Based on the above analyses, we next deduce the threshold for
opinion diffusion. When the opinion spreads in the network, there
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is a threshold for the affected rate. We suppose that the reviving rate
is o, and there is a value for the affected rate ., below which the
probability of any vertex being aware P} becomes a quite small value
tending to 0. In this case, the opinion will not spread throughout the
network. Suppose that diag(x) indicates transforming a vector x into
a diagonal matrix with the same element as x, and 1 is a vector with
an element of 1. Then, we present the threshold in Theorem 1.

Theorem 1. The threshold of the UAU opinion diffusion with
the same vertex impact on the resource-limit network is

Be=—> (19)

where A is the largest eigenvalue of the adjacent matrix A. The thresh-
old of the UAU opinion diffusion with the different vertex impact on
the resource-limit network is

where A is the largest eigenvalue of the matrix A’ = ATdiag(Al).
Proof. As the propagation process is stationary, we have
Pl(t+ 1) = P}(t) = P;. Suppose that P; tends to €; where ¢; < 1
when B tends to the threshold f,, then we obtain
Pit+1) =P (t) =P =¢, (21)
and we also have

Pit+1)=PBH=P=1—¢. (22)

Ignoring the second order terms of P} and for the same receiving
rate §; = B, then we have

J

Taking Eqgs. (21)-(23) into the second formula of Eq. (16) in
Theorem 2, it becomes

Gi:Ej(l—O{)-l-(l—Ei) 1— l—ﬂZaJ,eJ . (24)
i

Neglecting the second order terms of €, we get
e = /3 Z aj,-ej. (25)
i
Processing Eq. (25), it transforms to be
o
Z (aﬁ — *8],> Ej =0, (26)
; B

where §;; is the Kronecker-delta. Then, the threshold is

Be=—> 27)

A

where A is the largest eigenvalue of the adjacent matrix A.
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In terms of the different affected rate, the probability of vertex
i not being influenced P} is

P=1-$) (% . Pj) - @)

Taking (€i,...,€,...,€y) as vector € where N is the dimension of
adjacent matrix A, together with Egs. (21) and (22), we obtain

kpinote = AT - diag(A - D)e. (29)
Taking A" diag(A - 1) as the matrix A’, the threshold is

o
fo= (30)
where A’ is the largest eigenvalue of the matrix A’. The result
follows. O

The thresholds under the same and different affected rates were
obtained via the Markov chain method, which both depend on the
adjacent matrix of the proposed network. In the simulation, we will
further illustrate the threshold opinion diffusion on our proposed

network.

IV. SIMULATION

In this section, we display the simulation of our proposed net-
work, the degree distribution, and the opinion diffusion on networks
with different parameters is also investigated by presenting the level
of awareness and the threshold. In detail, the degree distribution
with different limit values M in our model, the stationary fraction
of awareness with the same and different affected rates among indi-
viduals, and the threshold of the diffusion are demonstrated in the
following.

A. Modeling of network

Primarily, we describe the construction of our network in simu-
lation based on our model. In the simulation, we take time as discrete
time steps. For each time step, a new vertex carried with m edges
comes and connects to existing vertices in networks. An adjacent
matrix is utilized to memorize the connections between vertices. The
detailed procedures are as follows:

(1) Give the termination time N, which is also the size of the net-
work, the initial number of vertices m, and the edge number m
of a newly coming vertex. Calculate IT; according to the degree
and create an interval for each existing vertex to present the
probability of being connected by new vertices.

(2) Generate a random number in the range [0,1] by rand() and find
the corresponding vertex whose interval includes the generated
number. Connect the new vertex to the chosen old vertex by
turning 0 element to 1 of the adjacent matrix.

(3) Update the IT; interval.

(4) Return (2) until achieving the termination.

Based on the above methods, we construct networks and
demonstrate them in Fig. 2 where the settings are N = 1000, m,
= 3, m = 3, and M = 10, 40, 75, respectively, for Figs. 2(a)-2(c). In
addition, the size and color of nodes in plots represent the degree.
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The bigger the size of the circle is, the largest degree value is. Yel-
low indicates a large degree while the other side blue indicates a
small degree according to the color bar on the right of each sub-
figure. The measure of color presenting the degree is only within
the same network. We can see that the small blue nodes are the
most and large yellow nodes are the least in all three subfigures.
The fraction of yellow and orange nodes of the network in Fig. 2(a)
is larger than that in Fig. 2, and the fraction of yellow and orange
nodes are the least in Fig. 2, which indicates that the degree is dis-
tributed almost equally with M while most unequally with M = 75.
A strict limit for the network contributes to the equality of the degree
distribution.

B. Degree distribution of limited resource network

As the degree distribution is the most important topology
which reveals the character of networks, we construct our proposed
limited resource networks with different limit values M and demon-
strate degree distributions by simulation, presenting the influence of
the attachment mechanism with the limit on the degree distribution
of networks.

The initial number of vertices my is set as 3, connected to each
other randomly, and the number of edges m carried by a newly com-
ing vertex is set as 2. According to our connection mechanism, we
construct networks with different values for the limit value M. The
time step is set as 10° for M = 10, 5 x 10° for M = 20, 20 x 10> for
M = 30, 40 x 10° for M = 40, 80 x 10° for M = 60, and 120 x 10°
for M = 80. The degree distributions of the resource-limit net-
work with different values of M under the common coordinate are
illustrated in Fig. 3.

Figures 3(a)-3(e), respectively, shows the degree distribution
with limit value M = 10, 20, 30, 40, 60, and 80. The red line denotes
the distribution of the power-law distribution with an exponent
y = 3, while the blue circle denotes the simulation results. As we can
see, all of the distributions with a limit of the resource-limit are simi-
lar to the power-law distribution, while they have a milder slope than
that of the given power-law distribution, especially in Figs. 3(a)-3(c).

ARTICLE scitation.org/journal/cha

This may suggest that the limit value makes the degree distributed
more equally compared on the whole with the original preferen-
tial attachment (PA) model. In addition, there existing degree value
beyond the limit value M in Figs. 3(a) and 3(b), explaining that M
is not the maximum degree value for degree stopping growing, it
symbolizes a restriction for the degree growth under the resources
limit.

For a better illustration, degree distributions of proposed
networks under a logarithmic coordinate are also demonstrated.
Figures 4(a)-4(e), respectively, illustrate the degree distribution of
networks with limit value M = 10, 20, 30, 40, 60, 80 under dou-
ble logarithmic coordinates. As we can see in Fig. 4, the degree
distribution of the network with M = 10 in Fig. 4(a), in which
its middle part obviously goes downward, is most different from
the distribution of scale-free networks. The degree distribution in
Fig. 4(e) is distributed as the theoretical distribution most closely.
Degree distributions of networks with larger values of M are closer
to the theoretical distribution of scale-free networks. However, sub-
figures in Fig. 4 show the difference between the degree distribution
of the limited resource network with the power-law distribution.
The tail of simulation results plot drops beneath the power-law
distribution plot owing to the existence of limit value M, while
simulation plots have a smaller slope than that of the power-law
distribution plot except for the tail of plots. This indicates that
the degree distribution with the limit value has a similar form as
the power-law distribution on the whole, while most degree val-
ues are more homogenous than the power-law distribution, the
fraction of quite large degree values (the tail of the distribution)
is less than that of the power-law distribution. Additionally, sim-
ulation results suggest that with M increasing, degree distribu-
tions tend to the theoretical distribution. Particularly, when M
approaches infinity, our proposed network becomes a scale-free
network.

To obtain the exponent of the power-law distribution of sim-
ulation results, we estimate the parameters of their distribution
formula via the linear regression method. The degree distribu-
tion of our proposed models follows the power-law distribution,

(2) (b)

(©)

FIG. 2. lllustration of three resource-limit networks: the initial number of vertices is 3, and the network size is set as N = 1000. (a), (b) and (c), respectively, show the
networks with the limit value M = 10, 40, and 75. The size and the color of nodes symbolize their degree values, where big and yellow circles indicate large degree values
while small and blue circles indicate small degree values. We can see that the limit value M has an influence on the degree distribution. (a) lllustration of the network with
M = 10. (b) lllustration of the network with M = 40. (c) lllustration of the network with M = 75.
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FIG. 3. The degree distribution with different limit values: (a)-(f) are, respectively, set with M = 10, 20, 30, 40, 60, and 80. The network size N is set as 1000. Red lines
indicate power-law distributions with expression 2m?k =3, and the blue circle plots indicate distributions of networks with resources limits. As we can see from (a)—(f), the degree
distribution is getting close to the power-law distribution. (a) The degree distribution with the limit value M = 10. (b) The degree distribution with the limit value M = 20.
(c) The degree distribution with the limit value M = 30. (d) The degree distribution with the limit value M = 40. (e) The degree distribution with the limit value M = 60.

(f) The degree distribution with the limit value M = 80.

which can be mathematically denoted as P(k) = Ck”. We take both
sides of the distribution equation as the logarithm and then we
have

y=yx+b, 31)

where y islog P(k), x is log k, and b is a parameter. Fitting the degree
distribution via linear regression method in Python, the exponent
y and the parameter b are obtained. The results are illustrated in
Table I in which we can see that the values of parameter y which is
the exponent of the power-law distribution is in the range of [—3.08,
—3.54]. The parameter b is the y-intercept of the fitted regression
line.

C. UAU opinion diffusion on networks

In this subsection, we simulate the process of opinion diffu-
sion on our proposed networks. We present the density of aware
vertices when the system is stationary with different affected rates
and make a comparison between the theoretical threshold and the
simulations results. In addition, propagation thresholds of the scale-
free network based on the original PA model and our resource-limit
model are displayed by calculating the theoretical threshold value
based on concrete matrices.

First, we demonstrate the density of aware vertices in the pro-
posed networks when the diffusion process is stationary. The under-
lying network is set as a constructed resource-limit network with a
size N = 1000 and a limit value M = 40; the reviving rate « is con-
stant, being 0.3, and the termination is set as T = 3000, large enough
for the system to be stationary. In each experiment, we change the
affected rate B, calculate the fraction of aware vertices, and then
present the fraction of the awareness as a function of 8. The sta-
tionary densities with different values of 8 are calculated as a mean
value of over 200 realizations. As a result, Fig. 5 demonstrates two
stationary densities of aware vertices as a function of affected rate in
different diffusion processes. In Fig. 5(a), the value of affected rate 8
is the same among all the vertices, while in Fig. 5(b), the affected rate
in the opinion diffusion is relevant to degree value, where the larger
the degree k of the vertex is, the larger the affected rate $ it has, fol-
lowing Eq. (15). The horizontal coordinate in Fig. 5(b) represents
the median value of 8.

We can see that both plots have an upward tendency as the
affected rate increases, which indicates the density of aware ver-
tices is in positive proportion with B. In detail, in both plots, the
growth rate of densities of awareness becomes lower with 8 getting
larger. In addition, the fraction of awareness in the diffusion with
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FIG. 4. The degree distribution under double log coordinate with different limit values: (a)—(f) is, respectively, set with M = 10, 20, 30, 40, 60, and 80. The network size N is
set as 1000. Red lines indicate power-law distributions with expression 2m?k—3, and the blue circle plots indicate distributions of networks with resources limit. The degree
distributions from (a)—(f) are getting close to the power-law distribution under the double log coordinate. (a) The degree distribution with the limit value M = 10 under log
coordinate. (b) The degree distribution with the limit value M = 20 under log coordinate. (c) The degree distribution with the limit value M = 30 under log coordinate. (d) The
degree distribution with the limit value M = 40 under log coordinate. (e) The degree distribution with the limit value M = 60 under log coordinate. (f) The degree distribution

with the limit value M = 80 under log coordinate.

k-dependent affected is larger than that with the same affected rate
when B and median {8} have the same value. In particular, when
the affected rate is small, the awareness fraction with k-dependent 8
is much larger that with the same B among vertices, e.g., when B is
0.04 in Fig. 5(a), the corresponding density is 0.1, while the relevant
density of median {8} = 0.04 in Fig. 5(b) is 0.25, which is two and
a half times larger compared to Fig. 5(a). Additionally, the aware-
ness fraction becomes over 0 when f is about 0.35 in Fig. 5(a), while
in Fig. 5(b), the awareness fraction becomes over 0 when median
{B} is 0.01. In the underlying network with M = 40, nearly 40%
vertices with the smallest degree have the smallest affected rate .
This declares that an increment in the affecting rate of vertices with

TABLE . Parameters of degree distribution under logarithmic coordinate of networks
with different limit values.

Parameter Limit value M

10 20 30 40 60 80
Y —2.54 —-3.02 —-283 —-290 —-3.05 -—-3.08
b 2.10 2.20 1.59 2.02 2.38 2.47

a large degree has a significant influence on the opinion diffusion
where the stationary density of awareness will become larger. The
results explain that in real life, a positive attitude of popular people
or people with authority toward the opinion accelerates the opinion
spreading, as they have a large affecting ability.

We next demonstrate the threshold of the opinion diffusion
on our proposed resource-limit networks. We investigate theoret-
ical thresholds on networks with different limit values of M and
network size N. We first set M increasing from 10 to 85 by an incre-
ment of 5 each time, and N is set as 1000. Thresholds are calculated
according to Eq. (27) in Sec. III A, and results are presented in
Fig. 6(b), where we can see that the plot has a downward trend on the
whole, illustrating that the threshold for 8 decreases with M increas-
ing. In addition, when M is small (from 10 to 30), the decrease is
apparent, while when M > 30, the dropping trend of the threshold
becomes slow. The simulation results show that the rise of the limit
value in our model reduces the threshold of opinion diffusion. In
other words, the limit value can suppress the diffusion, while the
absence of the limit facilitates the opinion spreading throughout the
network.

In terms of the network size in Fig. 6(b), the plot also has
a downward trend on the whole. The threshold for B descends
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FIG. 5. Stationary fractions of awareness vertices as a function of the affected rate B: the underlying networks are set as N = 1000 and K = 40 in all subfigures.
(a) presents the fraction of awareness with the same affected rate among vertices. (b) presents awareness fractions with k-dependent 8, where a large k leads to a
large B, and the horizontal coordinate indicates the median value of affected rates. The awareness fraction with k-dependent affected rate is higher than that with the same
affected rate. (a) Stationary fractions of awareness under the same B8 among vertices. (b) Stationary fractions of awareness under degree-dependent .

with the network size N reducing. Since the network is constructed
randomly by simulations, the threshold is a not monotone decreas-
ing with N. However, we can see that the threshold decreases when
N increases on the whole, which indicates that the expansion of net-
works lowers the threshold of opinion diffusion on our proposed
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network. This corresponds to the threshold on scale-free networks
with infinite size approaching 0.

Furthermore, we show the theoretical threshold for the min-
imum B of the degree-dependent opinion diffusion on resource-
limit networks. The thresholds are also investigated on networks
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FIG. 6. Theoretical thresholds for the affected rate 8 with different network settings under the opinion diffusion with the same affected rate: the threshold for 8 is taken as
a function of the limit value M in (a) and the network size N in (b). The threshold decreases as N and M increase. (a) Theoretical thresholds for 8 with different values of M.

(b) Theoretical thresholds for 8 with different values of N.
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FIG. 7. Theoretical thresholds for the affected rate 8 with different network settings under the opinion diffusion with k-dependent affected rate: the threshold for median B
is taken as a function of the limit value M in (a) and a function of the network size N in (b). The threshold decreases as N and M increase. (a) Theoretical thresholds for the
median value of 8 with different values of M. (b) Theoretical thresholds for the median value of 8 with different values of N.

constructed by different limit values of M and the network size N
in Fig. 7, where the threshold of minimum g is taken as a function
of M and N, respectively. In Fig. 7(a), M is set from 10 to 85 by an
increment of 5 each time, N is set as 1000, and the threshold gener-
ally descends with M increasing. This indicates that in the diffusion
with degree-dependent affected rate, the rise of the limit value also
reduces the threshold. In Fig. 7(b), N is set from 1000 to 4400 by an
increment of 200 each time, M is set as 40, the threshold decreases
with N increasing. This demonstrated that the expansion of net-
works lowers the threshold. In conclusion, the influence of network
properties on the diffusion threshold is the same under two diffu-
sion processes as shown in Figs. 6 and 7, while the degree-dependent
affected rate facilitates the opinion spreading as shown in Fig. 5.

V. CONCLUSIONS AND OUTLOOK

In this paper, we propose an evolving network model con-
sidering limited resources for the degree growth and propose the
mechanism for network modeling in light of the population growth
in biology. The model can describe those networks and systems with
limited resources, which restrains the growth of the degree. In the
model, we analyze the growth of degree via the Markov chain. In
addition, the UAU opinion diffusion is investigated on the limited
resource networks. We take the celebrity effect into consideration
in the diffusion process. The UAU diffusion model is improved by
adjusting the affected rate to a value depending on the degree value,
in which a vertex is more likely to be aware, influenced by its neigh-
bor with a large degree. Through the Markov chain method, the
diffusion threshold is analyzed. In various simulations, the degree
distribution of our network is presented, suggesting a similar but
not the same distribution as power-law distribution. The awareness

fraction and the theoretical threshold based on different diffusion
processes are also demonstrated.

Nevertheless, there are still some issues to be further addressed.
For heterogeneous networks, it is complicated to give the concrete
expression to generalize the increments of the number of individuals
varying with time. Analytical solutions for the limited probability of
nonhomogeneous Markov Chain have been a tough problem all the
time. In addition, for practical applications, there is a requirement
to apply our population model to fit realistic data. These issues will
be further studied in our future work.
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