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ABSTRACT

In the framework of the coevolution dynamics of the weak prisoner’s dilemma, inspired by prior empirical research, we present a coevolu-
tionary model with local network dynamics in a static network framework. Viewing the edges of the network as social interactions between
individuals, when individuals play the weak prisoner’s dilemma game, they accumulate both payoffs and social interaction willingness based
on a payoff matrix of the social interaction willingness we constructed. The edges are then inhibiting or activating based on the social interac-
tion willingness of the two individuals, and individuals only interact with others through activated edges, resulting in local network dynamics
in a static network framework. Individuals who receive more cooperation will be more likely to activate the edges around them, meaning they
will participate in more social interactions. Conversely, individuals who receive more defects will do the opposite. Specifically, we investigate
the evolutionary dynamics of cooperation under different levels of sensitivity to social interaction willingness and the temptation to defect.
Through the simulation, we find that sparse cooperator clusters can expand greatly when social interaction sensitivity and temptation to
defect are low. In contrast, dense cooperator clusters form rapidly in a high social interaction sensitivity, which protects the cooperation from
high temptation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0146999

In order to preserve the characteristics of the network during
the coevolution process, we employ a coevolution model that
transforms global network dynamics into local dynamics. Specif-
ically, individuals acquire social interaction willingness based on
the weak prisoner’s game outcomes and subsequently activate or
inhibit their surrounding edges based on their respective social
interaction willingness. The social interaction willingness of indi-
viduals is determined by a social interaction payoff matrix that we
construct, wherein we carefully examine the necessary conditions
that the matrix elements must satisfy to ensure that individual
behavior aligns with reality. To investigate the effects of individ-
ual social interaction intention and the temptation to defect, we
conduct simulations that explore the dynamics of local networks
around various individuals, including the protective, blocking,
and promoting mechanisms of cooperation under varying levels
of social interaction sensitivity.

I. INTRODUCTION

Cooperative behaviors can be found in a wide range of areas,
from interactions between nations to the social lives of individuals

and even to interactions between cells, which is the foundation of
social development and prosperity. Therefore, the research on coop-
eration has paramount importance in identifying which conditions
help or which ones block the spreading of altruistic behavior in
a complex population,1,2 and researchers from a variety of disci-
plines have been attracted to study the evolution of cooperation.3

In the research on the evolution of cooperation, the evolutionary
game theory provides a practical research framework for exploring
the potential mechanisms for cooperation dilemmas.4–6 In addition,
researchers have proposed various evolutionary cooperation mecha-
nisms that have a basis in reality, such as Nowak’s five rules in 2006,7

including the network reciprocity model, which is of great signifi-
cance to the research on the evolution of cooperation.5,8 Meanwhile,
complex networks have been extensively studied and developed
rapidly in the past few decades as an essential method for modeling
complex systems. Many networked game models have been pro-
posed and combined with evolutionary game theory and widely used
to study cooperative evolution based on the hypothesis of group or
pair interaction. Currently, the prisoner’s dilemma game (PDG) and
snowdrift game (SDG) have been studied extensively,9 so as the pub-
lic goods game (PGG).10 The research results have shown that the
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network structure is a powerful cooperation-promoting mechanism
in the prisoner’s dilemma,11 but this is not the case in the snowdrift
dilemma. Structure, surprisingly, decreases the frequency of cooper-
ators relative to well-mixed populations.9,12 Instead of large, compact
clusters common in spatial prisoner’s dilemma games, clusters in
spatial snowdrift dilemma games are small and filament-like9 due to
the fact that two interacting snowdrift players should adopt opposite
strategies to one another. In addition to the node-decision model,
there is also a link-decision model,13 which has the interaction diver-
sity based on edge strategy that has been demonstrated to effectively
enhance cooperation.14

Network reciprocity indicates that cooperators will resist the
invasion of defectors by forming spatial clusters in networks, and
the existence of a social structure may significantly affect the inter-
action mode between individuals, thus creating an environment
in which cooperation can emerge and be maintained.8,15 Nowak
and May initially observed that repeated games in a square grid
result in spatial chaos.16 In structured populations, cooperators
can expand by forming clusters, and despite being exploited by
defectors at the boundaries of the clusters, they can still benefit
from cooperation.17 Afterward, systematic Monte Carlo simula-
tions and generalized mean-field techniques are introduced into
the structured prisoner’s game,18 and Santos and Pacheco demon-
strated how important interactive structures are to the evolution
of cooperation.19 These findings have led to further research on
whether cooperators can survive or even thrive in different types of
network structures; random and scale-free networks have become a
focus of research,11,20,21 and evolutionary games on the small-world
networks have been just well-analyzed.22,23 These studies suggest that
the greater heterogeneity of a network can provide optimal condi-
tions for the evolution of cooperation by ensuring that cooperation
clusters are less affected by defection at their boundaries.24 The
strong promoting effect of cooperation by scale-free networks has
successfully garnered much attention in this field, but it was sub-
sequently shown to lack robustness in relation to the assumptions
of theoretical models.25 Hereinbefore, most of the above studies
only take individuals as the object of evolution, but in reality, the
environment in which individuals live will also change constantly.
Individuals in the game may be able to change the environment
according to his/her own will, that is, to change the topological
nature of the interaction structure between individuals. That is real-
ized in the coevolution of network structure and individual strategy
in the network. As a natural upgrade of static game theory on the
network, coevolution rules add the changes in the network struc-
ture to the evolution process, which creates more possibilities for
the evolutionary game on the networks.26,27 The adaptability of a spa-
tial structure has brought more space for individuals to individuate
their behaviors. Initially, coevolutionary rules affecting the inter-
actions between players were proposed by Zimmermann and Ebel
et al.28,29 Subsequently, Pacheco et al. designed more exquisite coevo-
lution models and studied the impact of time-scale separation of
network structure and individual evolution on cooperation.26,30 The
importance of this time-scale separation to the evolution of coop-
eration was further demonstrated by Rand et al. through human
volunteer experiments.31 Research on the adaptive network has also
achieved rich results in recent years. So far, Szolnoki et al. have
developed a model for making new connections on a lattice network,

demonstrating the promoting effect of network dynamics on coop-
eration in structured prisoner’s dilemma.32 Subsequently, Szolnoki
et al. created a coevolving model for making and deleting con-
nections on the random network and observed that cooperation
can still prevail even under the high temptation to defect in such
coevolving models;33 furthermore, they studied the emergence of
multilevel selection in the prisoner’s dilemma game on coevolving
random networks, which despite the sustained random topology
of the evolving network, maintains cooperation across the whole
span of defection temptation values.34 These research studies prove
the importance of network dynamics for cooperation in the struc-
tured prisoner’s dilemma from multiple perspectives, up to now,
the changing environment was already the subject of many works,35

and environmental feedback is shown to have a significant effect
on cooperation.36 More recently, reinforcement learning was discov-
ered to facilitate an optimal interaction intensity for cooperation.37

On the other side, network adaptation not only affects cooperation
but also provides some consideration for the formation of network
structure in actual society. For example, Li et al. modeled scale-
free networks through evolutionary games on adaptive networks.38

Holger et al. and Hiroki et al. obtained spontaneous emergence of
network complexity from the adaptive evolution of networks.29,39

In addition to the research on evolutionary dynamics theory, many
scholars have made a lot of exploration on the emergence and main-
tenance of cooperative behavior through behavioral experiments,40

such as the study of cognitive bias and communicating sentiment.41

Previous research on network dynamics has often focused on
rewriting the edges in the network.27 This approach assumes that
individuals can select their neighbors in various ways and interact
with all of them in each iteration. It also presupposes that the net-
work structure can easily change with evolution. However, studies
on evolutionary games in dynamic networks have shown that com-
plex features appear and disappear on the interactive network as
evolution progresses. In reality, the topological nature of the inter-
active network changes slowly. While we may switch departments or
make new friends, it is unlikely that our social relationship network
will easily alter its scale-free or small-world characteristics. Further-
more, even if social relations remain unchanged, our interactions
with others may still vary. Over time, a person’s willingness and fre-
quency of interaction with others may change, and the intensity of
social interaction may differ from person to person.42,43

To address the aforementioned issues, we propose a novel
dynamic network model in which edges cannot be rewritten but
can be activated or inhibited based on the individuals they connect
with. Our approach differs from previous works in that the network
for gaming will remain true to the original network, thus ensuring
a relatively stable network structure and heterogeneous interac-
tions between individuals. Furthermore, unlike models with varying
weights, all individuals in our model will treat all neighbors equally,
and the propagation of strategies will not be affected by local fitness
levels.44 In our proposed model, each player located on the node of
the network accumulates social interaction intention A in the game,
which affects the activation and suppression of edges. Individuals
who encounter more cooperators in the game will accumulate more
social interaction intention, and edges that connect individuals with
higher interaction intention are more likely to be activated. On this
basis, we present the social interaction intention payoff matrix and
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the sensitivity of individual social interaction intention to game situ-
ation ra. The player plays the weak prisoner’s dilemma game with the
immediate neighbors on square-lattice networks and small-world
networks. Through the simulations, we observe rich variations in the
evolution of cooperation and the local network structure of hetero-
geneous individuals. The results of our simulations demonstrate that
the cooperation can be promoted by the network’s dynamic nature
and the sensitivity of individual social interaction intention to game
situations in a wide range.

The rest of this paper is organized as follows. In Sec. II, we
introduce the evolutionary game model and the dynamic network
model based on social interaction intention. Section III presents the
simulation results obtained by different initial networks and param-
eter settings and then explains their internal laws and mechanisms.
In Sec. IV, we provide conclusions and outlooks.

II. MODELING

This section introduces the model of evolutionary games
employed in our study. In the network evolutionary game model,
the nodes in the network represent individuals, while the edges sig-
nify social interactions between them. The individuals connected
by edges engage in games with each other, apply their strategies,
obtain payoffs, and subsequently update their strategies based on
their payoffs. Drawing inspiration from the varying interaction fre-
quencies and intentions observed among individuals in real society,
our model additionally incorporates the activation and inhibition of
connecting edges in the network to simulate changes in the intensity
of social interactions among individuals. To distinguish our study
from those involving dynamic weights, we note that while individ-
uals in our model exhibit heterogeneous social interactions with
their neighbors, which affects the ease of strategy communication
based on their willingness to engage socially, they treat all neighbors
equally when accumulating income and learning strategies. Further-
more, the propagation difficulty of an individual’s strategy is not
directly impacted by the fitness of the neighborhood, but rather by
changes in the degree.44 In the subsequent sections, we will intro-
duce the game model, strategy evolution rules, and edge activation
rules utilized in our study.

A. Symmetric paired games and strategy evolution

In our model, we adopt a symmetrical two-person, two-strategy
game, in which individuals can choose to cooperate or defect. The
strategy space and payoff matrix are identical for both players in the
game. Specifically, in each elementary game, players receive a reward
of R for mutual cooperation and a punishment of P for mutual defec-
tion. A defector receives the temptation T from a cooperator, while
the cooperator receives the sucker’s payoff S. The resulting payoff
matrix U can be expressed as

U =

(

R S
T P

)

(1)

for an individual; the first and second rows represent the individual’s
choices to cooperate or defect, respectively, while the first and sec-
ond columns represent their opponent’s corresponding choices, and
the matrix element represents the payoff. The relative values of the

four parameters determine the type of game model. For instance,
the prisoner’s dilemma model is obtained when 2R > T+ S and
T > R > P > S, while the snowdrift game model is obtained when
2R > T+ S and T > R > S > P. In our proposed model, we uti-
lize the weak prisoner’s dilemma game, wherein the payoff for an
individual choosing to defect is never less than that for choosing
to cooperate, but mutual defection results in a lower return than
mutual cooperation. This represents a typical social dilemma.

In each iteration, each individual plays a game with all its neigh-
bors who have activated edges connecting to them. After all the
players have acquired their payoffs, each individual will have the
opportunity to update their strategy once, e.g., an individual named
x obtains payoff ux in one iteration, we randomly select one of
its neighbors, y, who receives the payoff uy at the same time, the
probability that x imitates its neighbor y’s strategy is given by the
Fermi–Dirac function,18,24,45

P(sx ← sy) =
1

1+ exp (ux − uy)/κ
, (2)

where si represents the strategy of i. Specifically, if uy > ux, where
ui denotes the payoff that individual i received in the previous turn,
then the probability that individual x imitates the strategy of y is pos-
itively correlated with the difference between uy and ux. The noise
factor κ modulates the impact of the payoff difference on the strategy
updating process. When κ → 0, strategy learning will be clear and
definite, and if κ →∞, strategy learning will become completely
random. If individual x does not update its strategy after playing
with y in a round, it will maintain its current strategy.

B. Activation of edges

In each iteration of the evolution, the edges on the network
are activated according to the individual’s willingness to interact
socially, and the individuals play games only through the activated
edges. The individual’s willingness to interact should be related to
the quality of the social environment, specifically, the proportion of
cooperative and defection encounters. If an individual encounters
cooperators more frequently, it implies a friendly social environ-
ment, which promotes the individual’s social interaction intention.
Conversely, if an individual encounters defectors more frequently,
it indicates a worse environment, and the presence of defectors may
inhibit the individual’s social interaction intention. Therefore, we
can define the income matrix Ua of social interaction willingness by
imitating the payoff matrix U of a two-person two-strategy game to
quantify the accumulated social interaction intention of individuals
in their social interactions and denote it as

Ua =

(

Ra Sa

Ta Pa

)

. (3)

As illustrated in this matrix, in each iteration, mutual cooperation
results in the accumulation of social interaction intention Ra for
both parties, while mutual defection results in the accumulation
of social interaction intention Pa for both parties. When a coop-
erator is defected, its social interaction intention will increase Sa,
while the social interaction intention of a defector will increase Ta.
Since cooperation should enhance social interaction intention, while
defection should inhibit it, the following inequalities should hold
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FIG. 1. An example for the evolution. The steps are included in a round of iter-
ation, in which the red dot represents the defector and the blue dot represents
the cooperator. The solid line and the dotted line represent activated and inhibited
edge, respectively. The green edges and arrows represent the possible interac-
tion between individuals and edges. Here, we take the individual i as an example,
through gameplay with activated edges, i accumulates payoffs (ui ) and social
interaction intentions (Ai ). Following this, i updates the strategy and distributes the
social interaction intentions evenly to the edges, thereby enabling the activation
or inhibition of the edges in the next iteration.

true: 2Ra > Ta + Sa and Ra > Pa. As for the inequality between 2Pa

and Sa + Ta, it should be indeterminate since we cannot ascertain
whether the defection of the cooperator or mutual defection has
more negative effects on social interaction.

Next, we must establish a correlation between the social inter-
action intention of individuals and the activation and inhibition of
edges. Based on the definition above, the accumulation of social
interaction willingness is closely related to the degree of the indi-
vidual, similar to the accumulation of payoff in the game. A larger
degree of an individual results in a higher upper limit of its inter-
action willingness accumulation. In order to average the influence
of degree heterogeneity while avoiding discrimination against spe-
cific strategy individuals, we can equally distribute the accumulated
social interaction intention of each individual to all the edges it pos-
sesses. Then, the probability of edge activation in the next time step
is determined by the sum of the two social interaction intention val-
ues it received. For example, the activation probability of an edge
between individual i and individual j is given by

P =
Ai

|Ni|
+

Aj

|Nj|
, (4)

where |Ni| and |Nj| are the number of neighbors of i and j, and Ai

and Aj are the accumulated social interaction intention of i and j. As
shown in Fig. 1, each individual plays the game once with all the acti-
vated edges with the neighbors to accumulate their social interaction
intention [Eq. (3)], and this is identified with the accumulation of
payoffs.

In addition, we use C to represent the cooperator and D to
represent the defector. When considering the total amount of inter-
action tendency provided by any pair of relations, the values of C–C,
D–D, and C–D relations are 2Ra, 2Pa, and Sa + Ta, respectively. For
a pair of C–C relations, the expected value of the number of edges

activated by 2Ra should be greater than 1 to reflect its promotion
effect on social interaction. In contrast, for the inhibition of D–D
and C–D relations on social interaction, the expected number of
edges that 2Pa and Sa + Ta can activate should be less than 1. To
simplify the model and ensure its directness, we take the value of
the social interaction intention assigned to an edge as the proba-
bility of activating the edge. The parameters should, thus, satisfy
2Ra > 1, 2Pa < 1, and Sa + Ta < 1. When a relationship provides
both individuals with an interaction willingness of 0.5, the value they
get from that relationship is, thus, expected to activate one edge in
the next round, which keeps the number of edges constant. There-
fore, it will be reasonable to set the baseline value at 0.5 for the social
interaction willingness provided by a relationship. As the interac-
tion willingness provided by a relationship exceeds 0.5, it promotes
an individual’s social interaction, and the individual is expected to
activate more edges in the next round. Conversely, if the interac-
tion willingness provided is less than 0.5, it inhibits the individual’s
next round of social interaction, and the individual contributes less
to the activation of the edges. Moreover, when a defector is coop-
erated with by a cooperator, its social interaction intention should
be enhanced for the C–D relationship. However, as the C–D rela-
tionship is ultimately oppressive, we assume that its promotion of
the defector’s social interaction intention is less than that of the C–C
relationship, i.e., Ra > Ta. Therefore, we conclude that the elements
in the social interaction intention matrix must satisfy the following
inequality conditions:











Ra > Ta > 0.5,

Sa + Ta < 1,

Pa < 0.5.

(5)

To ensure that the accumulation of individuals’ willingness to social
interaction conforms to the general social pattern of reality, we need
to satisfy Eq. (5) for the elements of Eq. (3). Specifically, cooperation
should have the ability to promote social interactions while defection
should inhibit social interactions.

Figure 1 shows the actions to be performed in one iteration.
At the start of the iteration, individuals use their strategies to play
games with their activated edges, accumulating their social interac-
tion willingness and profits concurrently. Subsequently, the strategy
and activated edges are updated through Eqs. (2) and (4), concluding
the current round of evolution.

III. SIMULATION AND RESULTS

In this section, we present the simulation method and the
results to demonstrate the influence of some parameters on coop-
erative evolution and the difference in the evolution under different
parameter combinations.

A. Method

For the game model, we consider the weak prisoner’s dilemma
with the payoff matrix

U =

(

1 0
b 0

)

, (6)
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where 1 ≤ b < 2 is a regulable parameter, and it is not the typical
PDG but reduces the four parameters in PDG to one,16 which makes
the experiment of an evolutionary game convenient to control,
simulate, and display. For the payoff matrix of individuals’ social
interaction willingness, we adopt a similar approach to introducing
a uniquely adjustable parameter. We introduce the parameter ra to
quantify the degree of promotion of cooperation and inhibition of
defection in social interaction, thereby controlling the sensitivity of
individuals’ social interaction willingness to the environment. We
assume that the interaction willingness provided by D–D relation-
ships is zero, and after making assumptions about the coefficients of
ra in other parameters, the matrix takes the form

Ua =

(

0.5+ ra 0.5− 1.5ra

0.5+ 0.5ra 0

)

. (7)

It should be noted that the coefficient of ra may have an impact
on the evolution, but for the sake of simplicity in simulations and
presentations, we require a parameter to adjust and measure the
influence tendency of different types of interaction on an individ-
ual’s social interaction intention. Under the current setting, when
ra → 0, only the D–D relationship inhibits social interaction, while
C–C and D–D relationships have no impact. As ra increases, C–C
and C–D relationships will increasingly promote and inhibit social
interaction, and in C–D relationships, both cooperators and defec-
tors are affected to a greater extent. While all parameters must satisfy
Eq. (5), this set of parameters is consistent with the category and
requirements of our research. Therefore, in this paper, we will not
discuss the influence caused by the coefficient of ra, but simply set it
to an acceptable value.

We conducted simulations on two types of networks: the
square lattice with periodic boundary (SL) and the WS network pro-
posed by Watts and Strogatz. The SL network consists of 40× 40
nodes, while the WS network has 1500 nodes with an average degree
of 4 and a random reconnection probability of 0.3. Each individual
has the opportunity in each iteration to learn the strategy of a ran-
domly selected neighbor with a probability given by Eq. (2), where
κ is set to 0.1. At the initial state of the evolution, we assign each
individual an equal probability of choosing to cooperate or defect as
their initial strategy and randomly activate half of the edges in the
network. To ensure the reliability of the results, we conducted each
simulation more than ten times and averaged the results.

In the following part, we present the statistical characteristics of
the evolution of cooperation and social interaction on the network
under various parameter combinations.

B. Evolution of cooperation

In this subsection, we focus on the fraction of cooperation after
the evolution reaches stability under different parameter sets and the
evolution of cooperation over time. Figure 2 displays the variation of
cooperation with the number of iterations under different parame-
ter values. We observe that the evolution on SL networks reaches
stability after about 150 iterations, while the evolution on the WS
network reaches stability after approximately 200 iterations. In the
early stage of evolution, there is a significant decline in cooperation,
and the lowest point of cooperation decline differs with different
parameters. As shown in Fig. 2, although the curve corresponding to

ra = 0.2 exhibits a lower lowest point of cooperation than the other
curves, it gradually increases after reaching the nadir and eventually
attains the highest fraction of cooperation. Conversely, the curves of
ra from 0.6 to 3 have a higher lowest point and reach stability faster
than that of ra = 0.2. For the parameter combinations displayed in
this figure, a larger ra indicates less time for the evolution to reach
equilibrium and a lower final cooperation ratio.

For the evolution results for different parameter combinations,
Fig. 3 illustrates the cooperation ratio attained by the system after
evolution reaches stability, under varying defect temptation b and
sensitivity ra. Specifically, b is set within the range of 1–2, and ra

within 0–3, in both the SL and WS networks. We conduct 500
iterations for each simulation in Fig. 3, with results recorded after
evolution reaches stability. Analysis of Fig. 3 reveals that when ra is
set to 0, even if b is set to 1, the fraction of cooperators on the net-
work is exceedingly low, and gradually decreases with the increase
of b. This phenomenon can be attributed to the variation of coop-
eration presented in Fig. 2 and the setup of Eq. (7). The cooperator
ratio will have a period of rapid decline in all the parameter combi-
nations in Fig. 2, as a result of our initial setting that the cooperator
and defector in the network are evenly mixed at the beginning of
evolution, allowing defectors to invade cooperation in large num-
bers, resulting in the rapid decline in the cooperation fraction in all
cases. The further analysis focuses on the setting of Eq. (7), when ra

is set to 0, the intention of social interaction is not affected by C–C
and C–D relations, while only D–D relations lead to a decline in the
intention of social interaction for both individuals. In the absence of
any mechanism promoting social interaction, the edges of the net-
work gradually diminish. The proliferation of defectors in the early
stages of evolution can sever almost all edges in the network, thereby
impeding the spread of cooperation strategy. Consequently, isolated
cooperators and defectors are left on the network, leading to the
stasis in evolution depicted in Figs. 2 and 3.

We set the step size of ra to 0.6 and included an additional
result for ra = 0.2 to show the evolution of the cooperation when ra

is small. As illustrated in Fig. 3, for any case where ra is greater than
0, the final cooperation fraction on the network is better than that on
a static network with the same b. Notably, the SL network exhibits
a more pronounced improvement, suggesting that the heterogeneity
of individuals’ willingness to participate in social activities does pro-
mote cooperation. Among the selected parameter groups, a smaller
ra leads to a higher cooperation fraction when b is small (below
1.55 on the SL network and below 1.6 on the WS network), and
ra = 0.2 yields the highest cooperation fraction. However, when b
surpasses a threshold, the fraction of cooperation obtained by a small
ra decreases rapidly with an increase of b and is lower than that
obtained by other ra settings; therefore, ra = 0.6 achieves the best
cooperation frequency in this situation. It can be seen that as the
temptation for defectors increases, individuals’ willingness to par-
ticipate in social interaction needs to be more sensitive to guide
the cooperation on the network to the optimum level. These details
are apparent in the phase transition of the parameter combinations
shown in Fig. 4, where a smaller ra is more effective in promot-
ing cooperation on the SL network, while on the WS network, the
cooperation peak shifts to higher ra more distinctly when b is larger.
Additionally, the change of the cooperation fraction on the WS net-
work is smoother than that on the SL network in the parameter
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FIG. 2. Time evolution of fc obtained for different ra. The changes of fc with the number of evolution iterations T , as obtained on SL and WS, where the sensitivity of the
individual’s social interaction intention is determined by ra. The temptation to defect b is set to 1.45 for SL networks and 1.50 for WS networks. The gray, yellow, blue, purple,
red, and brown curves represent the ra values of 0, 0.2, 0.6, 1.2, 1.8, 2.4, and 3.0, respectively. The cooperation thrives best at a small ra, and evolution stabilizes at around
200 steps.

space, and the evolution results on the SL network undergo a more
considerable change in specific parameter adjustments.

C. Evolution of individual social interactions

To investigate the impact of heterogeneous social interac-
tion intention on cooperation, we conducted further simulations
to observe the change in social interaction intensity of different
individuals during the evolution. Based on the evolutionary results
obtained in the previous subsection, we selected three values of

ra—0.2, 0.6, and 3.0—to represent low, moderate, and high social
interaction sensitivity, respectively. We then set b to 1.45 in the SL
network and 1.5 in the WS network and observed the social interac-
tion intention of individuals in different environments in these two
networks. In each iteration of the simulation, we focus on those indi-
viduals whose local cooperation frequency fc is within a certain range
and record the average activation ratio of their surrounding edges in
the next iteration. The results are shown in Fig. 5, the y axis repre-
sents the ratio of cooperators encountered by individuals in all their
interactions in one round, that is, the neighborhood cooperation

FIG. 3. Promotion of cooperation in dependence on b for ra from 0 to 3.0. Fraction of cooperators fc in dependence on different temptations to defect b, as obtained on SL
and WS, where the sensitivity of the individual’s social interaction intention is determined by ra. The orange, pink, blue red, purple, green, and brown curves represent the ra
values of 0, 0.2, 0.6, 1.2, 1.8, 2.4, and 3.0 respectively, while the black curves represent the evolution results on the static network with the same parameters for comparison.
When b is small, cooperation reaches its optimal level at ra close to 0.2, while when b is large, cooperation reaches its optimal level at ra close to 0.6.
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FIG. 4. Fraction of cooperation for different parameter pairs (b, ra). The heat map shows the cooperation frequency obtained by different defectors temptation b and different
sensitivity ra, from blue to red, the color bar indicates that the cooperation frequency changes from 0 to 1 accordingly. This figure aims to show the phase transition boundary
of the system state more clearly than Fig. 3.

ratio. The different colors indicate the average activation ratio of
the edges around the individual with the cooperation level corre-
sponding to the y axis in the next iteration. In the SL network, where
all individuals have only four edges, there were only five kinds of
neighborhood cooperator proportions for individuals. First, it can
be observed from the figure that in the early stage of evolution,
when ra is larger, individuals tend to exhibit more frequent social
interaction in the subsequent round. This implies that in a harsh
environment, more individuals may be forced to engage in social
interaction. However, according to the parameter setting in Eq. (7),

a larger value of ra ought to render individuals more susceptible to
their surroundings. Therefore, individuals with a larger proportion
of defectors around them should exhibit less social interaction com-
pared to those with a smaller value of ra, but the actual situation
is quite contrary, which is a counter-intuitive result. Furthermore,
among the given parameter combinations, only when ra = 0.2 did
the evolution of individual interaction intensity exhibit a slow pace,
while for ra = 0.6 and ra = 3.0, the interaction intensity stabilized
after a significant number of iterations. Moreover, the overall ten-
dency for social interaction on the network was observed to evolve

FIG. 5. The evolution of the activation ratio of edges connected to nodes with different neighborhood cooperation fractions over time for different parameter combinations
(b, ra). The activation ratio of edges of the next round of individuals with different fractions of cooperators fc on their neighborhood is obtained on the SL network and the WS
network under different parameter combinations. The y axis represents the different cooperator fractions fc on one’s neighborhood in one round, and the different colors from
blue to red represent the proportion of activated edges on all the edges around the individual in the next iteration, and the x axis corresponds to the number of iterations. In
all scenarios, the edge activation ratio of individuals undergoes an initial decline followed by a continuous increase. Specifically, when ra is large, nodes in highly defective
environments exhibit high edge activation rates, indicating that they are compelled to engage in social interactions in a harsh environment.
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stronger in all circumstances, and even though the final fraction of
cooperation varied for these parameter combinations, the distribu-
tion of social interaction intensity among individuals in different
environments became relatively similar after the evolution reaching
a stable state.

Moreover, we analyze the average social interaction ratios of
both cooperators and defectors in each iteration for the three differ-
ent ra values, as illustrated in Fig. 6, and the change of the fraction
of cooperation on the network is also put in the figure for compari-
son. We can find from the figure that in the early stage of evolution,
the social interaction of the defectors decreases rapidly under all
three parameter values. Meanwhile, for ra = 0.6 and ra = 3.0, even if
the proportion of cooperation declines, the social interaction inten-
sity of the cooperators increases rapidly until it approaches 1, in
sharp contrast to the situation when ra = 0.2. By comparing the
social interaction patterns of cooperators and defectors, we can con-
clude that for ra = 0.6 and ra = 3.0, the number of cooperators on
the network decreases rapidly, and their social interaction quickly
approaches saturation. This indicates that the network rapidly forms
a small, dense group of cooperators at the early stage of evolution,
while the defectors remain in the sparse regions of the network.
Due to the sensitivity of individuals’ social interaction willingness,
when ra is higher, the cooperator group is denser than that when ra

is 0.2, which forms better protection for the cooperators. However,
this also enables the defectors at the edge of the cooperator cluster
to acquire more social interaction willingness, forcing the individ-
uals around them to interact in a low-cooperation environment.
This counter-intuitive result is clearly observed in Fig. 5, as pre-
viously mentioned. Furthermore, this interaction with defectors in
a low-cooperation environment hinders the spread of cooperation,
explaining why the cooperation strategy is difficult to spread even

though the social interaction of cooperators is active when ra = 0.6
and ra = 3.0.

In addition, we have observed from Fig. 6 that for ra = 0.2,
although the social interaction ratio of cooperators is lower than that
of the other two sets of ra values in the early stage of evolution, the
social interaction ratio of defectors is also significantly lower due
to the lack of incentives from cooperators. This provides an oppor-
tunity for the cooperator cluster to gradually expand and spread,
leading to an eventual increase in the fraction of cooperation. In
Fig. 7, we present the average social interaction ratio of coopera-
tors and defectors for more parameter combinations. We use the
same set b values as in Fig. 6 and then show the average social activ-
ity intensity ratios of cooperators and defectors obtained by varying
ra. Our results suggest that when we fix the value of b, although fc
will change slightly due to the influence of ra, the final social inter-
action ratios of cooperators and defectors only vary within a small
range. These findings further support our explanation for why the
fraction of cooperation when ra = 0.2 is lower than that when ra is
high, especially when b is large. This is because the mutual assis-
tance among cooperators is weaker in the sparse cooperator cluster
formed by low social interaction willingness sensitivity, as compared
with the dense cooperator cluster formed by high ra, leading to
lower reciprocity between collaborators. With a larger temptation
to defect, the ability of the system to resist the invasion of defec-
tors becomes weaker. Therefore, when b is large, forming a dense
cooperator cluster rapidly, as with ra = 0.6 and ra = 3.0, is essen-
tial to effectively resist the invasion of defectors and maintain a high
fraction of cooperation.

Considering that network size may have a significant impact on
the evolution of cooperation, we conducted simulations at different
network sizes to observe the robustness of our results to changes in

FIG. 6. Time evolution of the activation ratio of edges connected to cooperators and defectors for different ra. The average social activity intensity of cooperators and defectors
in the network changes with the number of iterations, obtained on the SL network and WS network under different parameter combinations. The intensity of social activity
is calculated by the proportion of activated edges in the total number of edges around the individual. Blue, red, and yellow represent ra of 0.2, 0.6, and 3.0, respectively,
and dotted lines and dots represent the average intensity of social interaction of cooperators and defectors, respectively. In addition, we also put the curve of the fractions
of cooperators in the figure for comparison, which is represented by solid lines. Initially, Ad rapidly decreases, when ra is small, the activation ratio and cooperation fraction
change slowly, which leads to a higher final cooperation proportion.
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FIG. 7. The activity edge proportion of cooperators and defectors after evolution against ra. The final average social activity intensity of cooperators and defectors after the
evolution reaches stability, obtained on the SL network and the WS network in different parameter combinations. The defectors’ temptation b is fixed to 0.45 on the SL network
and 0.5 on the WS network. The yellow and blue dots represent the final social interaction intensity of the defector and cooperator, respectively, and the green dots represent
the proportion of the cooperator obtained by the same parameter for comparison. As ra increases from 0.2 to 3.0, fc decreases continuously, while Ac and Ad remain almost
unchanged when the evolution reaches stability.

network size. When the network size changes, the random recon-
nection probability and average degree of the WS network do not
change. Figure 8 shows the trend of the change in the cooperation
level fc after the evolution reaches stability with respect to network
size. Each result in the figure is captured after 500 steps of evolu-
tion. From the figure, we can observe that there is an impact for
fc when the network size is small. Specifically, when the network
size is small and ra = 0.2, fc in the SL networks is much lower than

that in other network sizes, and we can observe that the impact of
network sizes on fc in the SL networks is greater than that in the
WS networks. Moreover, the cooperation level in the WS network
is almost unaffected by changes in network size for any value of ra

and any network size, while the results in the SL network become
almost unaffected when the number of nodes in the network exceeds
1600. This suggests that our results are unstable for smaller network
sizes, but when the number of nodes is greater than 1600 in the SL

FIG. 8. The effect of network size on fc after the system is stable. The influence of system scale on the final cooperation level fc of WS networks and SL networks, where
red, blue, and yellow represent the situation where ra is 0.2, 0.6, and 3.0, respectively, and the temptation to defect b is set to 1.45 for SL networks and 1.50 for WS networks.
The network scale ranges from 500 to 4100 on WS networks and from 400 to 4225 on SL networks. When the network size is small, the cooperation is greatly affected by
the network size, but when the network size exceeds 1000, the evolutionary results become robust.
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networks and greater than 1300 in the WS networks, while the net-
work structure and type are unchanged, the results will be robust to
network size.

IV. CONCLUSIONS AND OUTLOOK

In this study, we introduce a novel model, the social interaction
willingness model, which incorporates the influence of an individ-
ual’s game situation on the activation and inhibition of edges in
subsequent iterations. We propose the social interaction willingness
income matrix, using one parameter to measure the sensitivity of
the individual’s social interaction willingness to the environment.
We apply this model to the weak prisoner’s dilemma game on
both the SL and WS networks and observe the evolution of differ-
ent individuals’ cooperation and social interaction intensity during
the simulation. Our simulations reveal that when the temptation
to defect is fixed, as long as the individual’s social interaction is
affected by the environment, at almost any level of social interaction
willingness sensitivity, the fraction of cooperation at the equilib-
rium state of evolution is higher on dynamic networks than that
on the static network under the same condition. When the temp-
tation of the defector b is small, a lower sensitivity can lead to a
higher final fraction of cooperation. Conversely, with an increase in
b, the optimal sensitivity of social interaction willingness required
to elicit the best fraction of cooperation also increases. The sensitiv-
ity of an individual’s social interaction intention to the environment
plays a critical role in determining the density and size of the coop-
erator cluster at the initial stage of network evolution. When the
sensitivity parameter ra is small, cooperation has less of a promotion
effect on social interaction, resulting in sparse connections between
cooperators on the network, making isolation of defectors more
effective. As a result, the defectors’ payoffs decrease, and cooperators
can gradually contact other individuals and spread their strategy.
However, because of the sparsity of cooperation clusters, when b is
large, cooperators can hardly resist the invasion of defectors with
higher payoffs. Therefore, low sensitivity performs well in environ-
ments with low defect temptation, but the fraction of cooperation
is low when the temptation is larger. Conversely, when individu-
als’ social interaction is more sensitive, the network quickly forms
a small and dense cooperator cluster at the early stage of evolu-
tion, which is difficult for defectors to invade. However, the high
level of sensitivity enables defectors at the edge of the cooperator
cluster to gain significant social interaction willingness, reducing
their isolation and giving them the ability to compel individuals
around them to interact in a high-defect environment. This, cou-
pled with the high temptation to defect, allows them to obtain high
profits while interacting with individuals on the edge of the coop-
erator cluster, forming a blockade on the expansion of cooperation.
This equilibrium makes it difficult to spread both cooperation and
defect but protects the cooperators, keeping them safe from defec-
tors and leading to a higher level of cooperation when the temptation
is higher.

This study reveals the impact of local dynamics and hetero-
geneity of individual social interactions on cooperation within a
given network. It is similar to previous research that utilizes evolv-
ing weights to model the unequal probability of individuals learning
strategies from different neighbors.44 However, our model differs

from these studies in that individual fitness is not influenced by
neighborhood profits and, during the coevolution of the network,
individuals treat their neighbors equally, without actively manip-
ulating interaction intensity with specific neighbors. Moreover,
depending on the social interaction willingness of neighbors, one
individual on the network can be forced to engage in the games.
Furthermore, we focus solely on the weak prisoner’s dilemma model
and Fermi updating rules, although other models, such as the snow-
drift game and deer hunting game, could also be applied, as well as
alternative strategy updating rules such as the birth and death pro-
cess or learning optimal strategies. Varying these factors could yield
diverse results, highlighting the complexity of cooperative behavior
in evolving networks. Last, it is worth mentioning that recent stud-
ies have pointed out that cooperative behavior is just one facet of
morality that could be studied using evolutionary game models,46 we
hope our research will contribute to future research on evolutionary
games on networks and moral preferences.
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