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Evolving Scale-Free Networks by Poisson Process:
Modeling and Degree Distribution

Minyu Feng, Hong Qu, Member, IEEE, Zhang Yi, Senior Member, IEEE, Xiurui Xie, and Jürgen Kurths

Abstract—Since the great mathematician Leonhard Euler ini-
tiated the study of graph theory, the network has been one of the
most significant research subject in multidisciplinary. In recent
years, the proposition of the small-world and scale-free proper-
ties of complex networks in statistical physics made the network
science intriguing again for many researchers. One of the chal-
lenges of the network science is to propose rational models for
complex networks. In this paper, in order to reveal the influence
of the vertex generating mechanism of complex networks, we
propose three novel models based on the homogeneous Poisson,
nonhomogeneous Poisson and birth death process, respectively,
which can be regarded as typical scale-free networks and uti-
lized to simulate practical networks. The degree distribution and
exponent are analyzed and explained in mathematics by different
approaches. In the simulation, we display the modeling process,
the degree distribution of empirical data by statistical methods,
and reliability of proposed networks, results show our models
follow the features of typical complex networks. Finally, some
future challenges for complex systems are discussed.

Index Terms—Complex network modeling, degree distribu-
tion, degree exponent, Poisson process, power-law distribution,
reliability.

I. INTRODUCTION

W ITH rapid development of Internet, information tech-
nology has become the focus of people’s daily lives,

and ushered the mankind into the age of complex networks.
Network science based on information technology is now
a significant issue and a useful tool to man’s activities of
production. As we know, many practical networks such as
communication, traffic, social, and biological networks are
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regarded as complex systems with the same properties like
small-world, scale-free, etc. However, practical networks are
difficult to study, the key issue of network science is to cre-
ate a virtual complex network model, which follows similar
topology characteristics of practical networks.

In the late 20th century, two significant small-world
models were proposed by Watts and Strogatz [1] and
Newman and Watts [2]. They discovered that the practical
networks are neither regular networks nor random graphs and
should fall in between them, and realized them by randomly
reconnecting and adding edges. Significantly, their models
achieved the goal of a low distance between any two vertices
and first simulates the small-world characteristic, the domina-
tion of ER random graph proposed by Erdös and Rényi [30]
in network science is finally changed. Both ER random graph
and WS small-world network have the same property that their
degree distributions follow a Poisson distribution, having a
peak value in the average degree that considered as exponen-
tial networks. However, the recent researches reveal that, most
practical networks follow power-law distributions which are
commonly called scale-free networks. Barabási and Albert [3]
are the pioneer researchers to study the issue, and they pro-
posed the famous BA scale-free network model. They take
the growth and preferential attachment of practical networks
into consideration, and successfully construct a network with
a power-law distribution. Later, many methods such as the
mean-field [4], rate-equation [5], and master-equation [6] were
proposed to prove the power-law character of scale-free net-
works. In addition, there are many variants of BA model, such
as temporal networks [7], spatial networks [8], aging net-
works [9], networks with accelerating growing [10], static
networks [11], hierarchical networks [12], etc. Apart from BA
network, there are also many other studies based on complex
dynamics networks [13]–[20].

However, most scale-free networks consider their genera-
tion rates of vertices and number of connections as constants,
but in practical situation, all variables keep changing over
time. If so, are these networks still independent of time? In
order to address this issue, we propose a novel scale-free
network based on the Poisson process, which is an evolu-
tion of the BA scale-free network. Our model starts with a
small group that highly gathered and connected to each other,
and in the processing of modeling, we employ the homoge-
neous Poisson process to simulate the generation of vertices,
and Gaussian distribution to produce the connection number.
The dynamic method in physical and probabilistic approach
in mathematic are utilized to analyze the degree distribution

2168-2267 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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and its relationship with time. In addition, assuming that the
generation rate changes with time and the existing individu-
als keep dying, we extend this model to the nonhomogeneous
Poisson and birth and death situation, which are more close to
practical networks, with topologies discussed. In the view of
application, these networks with variable generation rates can
be utilized to simulate the practical situation which is difficult
to obtain the data, and regarded as underlying models to solve
issues like search, synchronization, etc. In the simulation, we
demonstrate detailed construction processes of three networks,
apply statistical approach to obtain the degree distribution and
exponent from empirical data, and measure the reliability of
these networks under deliberate and random attack.

This paper is organized as follows. A detailed pre-
sentation and analysis of the homogeneous Poisson net-
work (HPN) is given in Section II. Introduction and analysis
of nonhomogeneous Poisson network (NHPN) and birth and
death network (BDN) are presented in Section III. Simulations
are carried out in Section IV to demonstrate these networks
follow power-law and are scale-free. Finally, the conclusion is
drawn in Section V.

II. SCALE-FREE NETWORK BASED ON HOMOGENEOUS

POISSON PROCESS

It is well known that the BA scale-free network is one of
the first models proposed the growth characteristic. Both BA
scale-free network and other similar networks simply con-
sider that one vertex or individual is connected to the existing
network per unit time. However, for real networks, the gen-
eration of vertices or individuals follows certain rules. For
example, the population network does not generate one indi-
vidual each time, instead, the growth rate changes all the time
and is decided by many factors such as wars, economies, etc.
Consequently, a common property of these networks is that the
generation possesses a certain rate, which can be supposed as
a counting process.

Besides, a BA scale-free network obtains permanent m
edges for each vertex added in, but in real situation, con-
nections of different vertices are very mutable. For example,
in the network of the research reference, once a high qual-
ity paper such as emergence of scaling in random networks
by Barabási and Albert [3] is published, many related refer-
ences will emerge in a short time. Consequently, the number
of connections is influenced by the vertex’s own fitness.

The network initialization issue is also undone by Barabási
and Albert [3]. Given realistic consideration, the individuals
of an initial network are often small group but highly gath-
ered and connected to each other. For instance, Advanced
Research Projects Agency Network, the precursor of Internet,
has only four vertices dispersed in four universities and con-
nected to each others. Consequently, the initialization phase of
a complex network is high clustering and has short distance.

Based on these issues, we then show a novel model based
on the Poisson process that follows a power-law distribution.

A. Description of Proposed Model

The main idea of our proposed model is to propose the
initial network, growth mechanism, preferential connection

and end time, we summarize them as initialization, growth,
connection, and termination and briefly introduce them as
below.

1) Initialization: Given N vertices as a nearest-neighbor
coupled networks, in which each vertex connects to its
K/2 neighbors on the left and the right. For every pair
of vertices, an extra connection is established by the
probability of p.

2) Growth: Newly added vertices i are coming by the rate
at λ. For each new vertex, ηi edges are connected to the
existing vertices.

3) Connection: The probability of a newly added vertex
connected to an existing vertex is decided by �i.

4) Termination: As the time reaches T , the algorithm
terminates and the network is output.

In Initialization, an initial network is input as the size of m0,
and constructed as a NW small-world network, the values of
K and p determine the degree of clustering, which can be
controlled to simulate different types of networks. This step
can solve the unaddressed issue of BA network.

The growth is the key section of our model, which is the
main improvement of BA network, and the counting time starts
from this phase to simplify calculation. The generation of ver-
tices follows the rule of a Poisson distribution, and the detailed
definition is given below.

Definition 1: The generation of new vertices N(t), t � 0 is
a Poisson process having rate λ, λ > 0, and:

1) N(0) = 0;
2) the process has independent increments;
3) the number of added vertices in any interval of length t

is Poisson distributed with mean λt, which is, for all s,
t ≥ 0

P{N(t + s) − N(s) = k} = [λ(t − s)]k

k!
e−λ(t−s)

k = 0, 1, . . . (1)

Then, different from BA network, for each new vertex, the
number of connections is supposed to follow a Gaussian dis-
tribution as its fitness function. The definition is expressed as
follows.

Definition 2: For a newly added vertex i, the number of
connections ηi is a Gaussian distribution with parameters
μ and σ 2, and the density is given by

f (x) = 1√
2πσ

e−(x−μ)2/2σ 2
0 < x < +∞ (2)

where x is supposed to be an integer.
The fitness function denotes the adaptivity of a new vertex,

and the higher value indicates the vertex is easier to fit in with
the network.

In connection and termination, �k, the probability of a
connection to a vertex i, is denoted as

�(ki) = ki
∑

j kj
(3)

where ki is the degree of vertex i, i denotes all existing vertices.
We utilize the roulette to select the vertex to be connected.
Repeated connection is avoided. T is the time of termination,
which can be controlled.
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TABLE I
PARAMETERS FOR THE DEMONSTRATION

Fig. 1. Initialization: five vertices are connected as a nearest-neighbor coupled
network, with each vertex connecting to its neighbor on the left and the right,
and adding edges by the probability 0.1.

Fig. 2. HPN evolution. New vertices are generated by the mean rate 1 and
connect to one or two existing vertex, the generation is terminated at time 10.

B. Demonstration of the Network Evolution

In this section, we present an example of the scale-free
model based on a Poisson process and explain its evolution
in details. In order to describe with clarity, the parameters are
listed in Table I.

The detailed construction is illustrated in Figs. 1 and 2.
Fig. 1 simulates the process of building an initial network,
which is a simple small-world network and only one extra
edge is connected as a shortcut. Fig. 2 contains the network
evolution of the growth, connection and termination. From
this figure, we can see that the mean rate λ = (1 + 1 +
2 + 2 + 1 + 1 + 2)/10 = 1. According to Definition 1, the
generation follows a Poisson process with mean rate 1. And
once a new vertex arrives, the number of connections to exist-
ing vertices is decided by a Gaussian distribution with the
value ηi ∈ {1, 2}. Obviously, the poor vertices with the degree
below 4 make the majority (80%) of this network, and the rich
vertices with the degree upon 4 are in minority (20%), which
is commonly referred as “the Matthew effect” or “the rich-
get-richer phenomenon,” and also the property of a power-law
distribution.

C. Fitting Proposed Model in Network of Coauthorships

One of the potential applications of the HPN is to simulate
the practical networks since they have many common char-
acters such as the growth following the Poisson process, the
connection following the Gauss distribution and the preferen-
tial attachment. In this section, we give a simple example to
fit a HPN in the network of coauthorships.

The database is a network of coauthorships between scien-
tists, and scientists in this case who are themselves publishing
on the topic of networks, which was studied by Newman [21].

Fig. 3. Degree distribution of the coauthorship network and HPN, the values
of P(k) are (0, 0.1523, 0.2473, 0.2140, 0.1252, 0.0768, 0.0485, 0.0264, 0.0220,
0.0176, 0.0132, 0.0126, 0.0050, 0.0038, 0.0031, 0.0025, 0.0044, 0.0031,
0.0019, 0.0006, 0.0025, 0.0013, 0.0006, 0.0006, 0.0006, 0.0013, 0.0013, 0,
0.0006, 0, 0.0013, 0.0006, 0, 0.0013, 0) and (0, 0.1523, 0.2473, 0.2140,
0.1252, 0.0768, 0.0485, 0.0264, 0.0220, 0.0176, 0.0132, 0.0126, 0.0050,
0.0038, 0.0031, 0.0025, 0.0044, 0.0031, 0.0019, 0.0006, 0.0025, 0.0013,
0.0006, 0.0006, 0.0006, 0.0013, 0.0013, 0, 0.0006, 0, 0.0013, 0.0006, 0,
0.0013, 0).

To fit the real-world network, the parameters of growth and
connection are required, and our object is to extract these data
from the coauthorship network. As described in [21], the net-
work started from two articles by Newman and Boccaletti,
which indicate the initial network has only two connected ver-
tices. The articles are published from 2003 to 2006 and a total
of 1589 scientists are included in the network, then we suppose
the growth rate λ = 44.14 per month and the termination time
T = 36. From observation, we find the connection of each ver-
tex is between 1 and 5, which can be considered as a Gauss
distribution with μ = 3 and σ = 1. With these arguments
from the coauthorship network, we can build a HPN by our
method.

After the theoretical model is obtained, we mainly compare
its degree distribution with practical coauthorship network, the
result is shown in Fig. 3. Then, we employ the correlation
coefficient of their degree distributions to calculate the fitness
of these two networks, that is

ρdcdh = cov(dc, dh)√
Var(dc)

√
Var(dh)

= 0.9772 (4)

where cov denotes the covariance, Var denotes the variance, dc

is the vector of the frequency ranging from degree 1 to 35 of
the coauthorship network, and dh is the vector of the frequency
ranging from degree 1 to 35 of the homogeneous network,
which are listed in the illustration of Fig. 3. The value of
ρdcdh indicates the fitness of vector dc and dh.

The result of correlation coefficient reveals that our pro-
posed model has a good performance on fitting in the
coauthorship network in the topology like the degree distri-
bution. However, it is complex to decide whether an academic
model is perfectly fitted in a practical network, and many fac-
tors should be taken into consideration and further study is
required.

D. Theoretical Analysis of the Proposed Model

As we know, the scale-free is one of the most important
topologies of complex networks. In this section, we focus
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on proving that the proposed model is a scale-free net-
work, which is, given a fixed λ, the degree exponent of
this network is unrelated to the construction time. We uti-
lize two approaches to accomplish the proof. Before the
proof carries out, some important definitions are provided
first.

Definition 3: At time t, the probability that the degree of a
random vertex in the network is exactly k, denoted by Pk(t),
is said to be a transient degree distribution.

Definition 4: Assuming that Pk(i, t) denotes the probability
that, at time t, the degree of vertex i is exactly k, and the initial
network is ignored, then the average probability

Pk(t) =
∑

i
Pk(i, t)

t
(5)

is called the average degree distribution for the network at
time t.

Definition 5: If lim
t→∞ Pk(t) exists and is equal to P(k), then

P(k) is said to be the steady state degree distribution of this
network.

Definitions 3 and 4 provide two different forms of the degree
distribution at time t, and Definition 5 is the target of our proof.
As t → ∞, the small initial network has little effect on the
degree distribution, therefore, in the proof below, the initial
network is ignored, which is, t = 0, the number of vertex is 0.
All the lemma and theorems proven below are based on the
homogeneous Poisson model.

Lemma 1: Given a fixed arrival rate λ and an expected
connection μ, the expectation of total degree at time t
is 2λμt.

Proof: Suppose that N(t) denotes the number of vertices at
time t, η denotes the number of connections, then E[N(t)η]
denotes the total number of edges at time t, and by definition,
E[N(t)] = λt and E[η] = μ.

The number of vertices is independent of connections,
therefore, the covariance is 0, that is

cov(N(t), η) = E[N(t)η] − E[N(t)]E[η] = 0 (6)

scilicet

E[N(t)ηi] = E[N(t)]E[ηi] = λμt. (7)

The total degree is two times of the total edges, and
according to the properties of expectation

E = E[2N(t)]E[ηi] = 2λμt. (8)

The result follows.
Theorem 1: Given a fixed arrival rate λ, the degree expo-

nent of the proposed network is independent of time.
The first proof derives from the dynamics method which is

widely used by physicists.
Proof: Suppose that ki(t) is the degree of vertex i at time t.

According to Lemma 1, at time t, the total degree is
∑

j

kj ≈ 2 λμt. (9)

For each new vertex with η connections, the probability that
an edge connects to the existing vertex i is approximated as

P =
(η

1

)
[�(ki)][1 − �(ki)]

η−1 ≈ η�(ki) = ηki

2λμt
(10)

where �(ki) is defined by (3).
As we know, λ new vertices generate per unit time, and

the degree growth rate of vertex i is λP. Then, ki(t) can
be regarded as a dynamic equation based on the continuum
theory, and follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂ki(t)

∂t
≈ λP = ηki(t)

2μt

ki

(
i

λ

)

= η

(11)

the solution is

ki(t) = η

(
λt

i

) η
2μ

(12)

where η/2μ is the kinetic index whose expectation is 1/2.
Assuming that vertex i is randomly selected from λt vertices

and follows a homogeneous distribution, that is, p(i) = 1/λt,
according to (12), the transient degree distribution is:

P{ki(t) < k} = P

⎧
⎨

⎩
i > λt

(
k

η

)− 2μ
η

⎫
⎬

⎭
= 1 −

λt
(

k
η

)− 2μ
η

λt
(13)

the partial derivatives by k is

Pk(t) = ∂P{ki(t) < k}
∂k

= 2μη
2μ
η

−1k
−
(

2μ
η

+1
)

(14)

then, the steady state distribution is

P(k) = lim
t→∞ Pk(t) = 2μη

2μ
η

−1k−γ (15)

where γ = (2μ/η) + 1 and is independent of time t.
The result follows.
The alternative proof is based on the probabilistic approach

and commonly used by mathematicians.
Proof: Suppose that ki(t), the degree of vertex i at time t,

denotes a stochastic variable, and Pk(i, t) denotes the proba-
bility that the degree of vertex i is k at time t. Suppose that per
unit time, λ new vertices are generated, each with η connec-
tions, then the probability that an edge connects to the existing
vertex i is approximated as

P′ =
(λ

1

)
P(1 − P)λ−1 ≈ λP ≈ ηk

2μt
(16)

where P follows (10).
Hence, the connectivity distribution of a vertex obeys the

following master equation:

Pk(i, t + 1) ≈ η(k − 1)

2μt
Pk−1(i, t) +

(

1 − ηk

2μt

)

Pk(i, t) (17)

that is

2μt[Pk(i, t + 1) − Pk−1(i, t)]

= −η[kPk(i, t) − (k − 1)Pk−1(i, t)]. (18)
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Equation (18) is a difference equation, and based on the contin-
uum theory, can be regarded as a partial differential equation,
which is

2μt
∂Pk(i, t)

∂t
= −η

∂[kPk(i, t)]

∂k
. (19)

Assuming that the expected degree function of vertex i is

k(i, t) =
∞∑

k=0

kPk(i, t) ≈
∞∫

0

kPk(i, t)dk. (20)

Then, by integral definition of k(i, t) and the integration by
parts of definite integral

k(i, t) = −
⎧
⎨

⎩
0 −

∞∫

0

kPk(i, t)dk

⎫
⎬

⎭

= −
⎧
⎨

⎩

[
k2Pk(i, t)

]∞
0

−
∞∫

0

kPk(i, t)dk

⎫
⎬

⎭

= −
∞∫

0

kd[kPk(i, t)] = −
∞∫

0

kdk
∂[kPk(i, t)]

∂k
. (21)

Equation (19) can be converted into

2μt

∞∫

0

kdk
∂Pk(i, t)

∂t
= −η

∞∫

0

kdk
∂[kPk(i, t)]

∂k
(22)

considering (21), that is

∂k(i, t)

∂t
= ηk(i, t)

2μt
. (23)

Thereupon, the partial differential equation turns into
⎧
⎪⎪⎨

⎪⎪⎩

∂k(i, t)

∂t
= ηk(i, t)

2μt

k

(

i,
i

λ

)

= μ

(24)

its general solution is k = tη/2μC, and with the substitution of
the condition, the result is

k = μ

(
λt

i

) η
2μ

(25)

and we can obtain

i = λt
(μ

k

) 2μ
η

. (26)

The discrete distribution is described as a continuous Dirac
δ-function, then according to Definition 4, our degree distri-
bution can be denoted as

Pk(t) = 1

t

λt∑

i

Pk(i, t) = 1

t

λt∫

0

Pk(i, t)

= 1

t

λt∫

0

δ
(
k − ki(t)

)
di = −1

t

λt∫

0

δ
(
ki(t) − k

)
di (27)

obviously

dki(t) = −∂ki(t)

∂i
di (28)

substitute it into (27), we obtain that

Pk(t) = −1

t

(

1

/
∂ki(t)

∂i

) λt∫

0

δ
(
ki(t) − k

)
dki(t)

= −1

t

(

1

/
∂ki(t)

∂i

)

= 2i

ηt

(
i

λt

) η
2μ

. (29)

According to Definition 5, (26), and (29), the steady state
degree distribution is

P(k) = lim
t→∞ Pk(t) = lim

t→∞

(
2i

ηt

(
i

λt

) η
2μ

)∣
∣
∣
∣
∣
i=λt( μ

k )
2μ
η

= 2λμ
1+ 2λμ

η η−1k−γ (30)

where γ = (2μ/η) + 1 and is independent of time t.
The result follows.
Due to the different proof approaches, (15) and (30) display

a little difference, but if we seek their expectations, the result
is the same

P(k) = 2λμ2λk−γ (31)

where γ = 3.
Obviously, when λ is fixed, the conclusion is that our pro-

posed model is independent of time and follows the conception
of a scale-free network.

However, this is just a fundamental and ideal model, many
variables should be taken into consideration, such as vari-
able rates and mortality rate of vertices. Therefore, based
on the homogeneous Poisson scale-free model, we propose
two extension models and discuss whether they are still free
of time.

III. VARIOUS EXTENSIONS OF THE POISSON

SCALE-FREE MODEL

As we discuss above, the generation rate of many complex
networks changes all the time. In different periods, the rate
is also distinct, for example, the population rate during war
years is quite different from the peace time. This phenomenon
of complex networks is a typical nonhomogeneous process.
Additionally, most of complex models are simply pure birth
processes which means the vertices are always increasing, but
in fact, individual not only generates but vanishes in any kind
of networks, for instances, the species extinction in food chain
networks, the bankruptcy of a company in banking network, all
of these networks present the birth and death characteristics.

Based on these two viewpoints, in this section, we propose
two various extension model: 1) the NHPN model and 2) the
BDN model.

A. Nonhomogeneous Poisson Network

The construction algorithm of this model is close to
Section II-A: initialization, growth, connection, and termina-
tion, the only difference is in growth.
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Fig. 4. NHPN evolution. New vertices are generated by the rate λ(t) and
connect to one existing vertex, the generation is terminated at time 9.

1) Growth: Newly added vertices i are coming by the rate
at λ(t). For each new vertex, ηi edges are connected to the
existing vertices.

This process with λ(t) which relates to the time t can be
regarded as a nonhomogeneous Poisson process, the definition
is as follows.

Definition 6: The generation of new vertices N(t), t � 0
is a nonhomogeneous Poisson process with the continuous
function λ(t), t ≥ 0, and:

1) N(0) = 0;
2) the process has independent increments;
3) P{N(t + �t) − N(t) = 1} = λ�t + o(t);
4) P{N(t + �t) − N(t) ≥ 2} = o(t).
Theorem 2: If {N(t), t ≥ 0} is a nonhomogeneous Poisson

process and λ(t) is continuous, in interval [t, t + s], the
probability that the number of added vertices is k follows:

P{N(t + s) − N(s) = k} = [m(t + s) − m(t)]k

k!
em(t+s)−m(t)

k = 0, 1, . . . (32)

where m(t) = ∫ t
0 λ(s)ds, and the m(t + s) − m(t) is the mean

value of this process.
Here, we display a model constructing process, the contin-

uous λ(t) is expressed as follows:

λ(t) =

⎧
⎪⎨

⎪⎩

t + 1, 0 < t ≤ 3

4, 3 < t ≤ 6

6 − (t − 4), 6 < t ≤ 9
λ(t) = λ(t − 9). (33)

The initial network refers to Fig. 1. For simplicity, we
assume that ηi = 1 and the shortest unit time is 1. The process
is demonstrated in Fig. 4. The power-law property is displayed
in this network, low degree vertices below 4 are in the major-
ity (about 91.67%), while high degree vertices above 7 are in
the minority (about 5.56%).

Next, we focus on the degree distribution of the NHPN.
Suppose that λ(t) is denoted as (33), and for clarity, we assume
that number of edges added each time is a fixed μ and ignore
the initial network. The dynamic method is applied to solve
this issue.

Suppose that ki(t) is the degree of vertex i at time t, the
total number of added vertices is m(t), then the total degree is

∑

j

kj ≈ 2 m(t)μ. (34)

The probability that an edge connects to the existing vertex i
is approximated as

P = C1
μ[�(ki)][1 − �(ki)]

μ−1 ≈ μ�(ki) = ki

2m(t)
. (35)

The degree growth rate of i per unit time is λ(t)P,
and dynamic equation based on the continuum theory is
expressed as

⎧
⎪⎨

⎪⎩

∂ki(t)

∂t
≈ kiλ(t)

2m(t)

ki

(
m−1(i)

)
= μ

(36)

where m−1(i) denotes the time vertex i arrives. Notice that
(1/k)∂k = (∂m(t)/2m(t)), the general solution is ki(t) =
m(t)(1/2)C, and with the substitution of the condition, the
result is

ki(t) = μ

[
m(t)

i

] 1
2

. (37)

Assuming that vertex i is randomly selected from m(t)
vertices and follows a homogeneous distribution, that is,
p(i) = 1/m(t), the transient degree distribution is:

P{ki(t) < k} = P

{

i > m(t)
(μ

k

)2
}

= 1 − m(t)
(

μ
k

)2

m(t)
(38)

the partial derivatives by k is

Pk(t) = ∂P{ki(t) < k}
∂k

= 2μ2k−3 (39)

then, the steady degree distribution is

P(k) = lim
t→∞ Pk(t) = 2μ2k−γ (40)

where γ = 3 and is independent of time.
From this derivation, we can see that no matter homoge-

neous or nonhomogeneous the generation rate is, as long as
it is continuous, the degree distribution keeps stable, and time
range has no influence on the distribution.

B. Birth and Death Network

The last network model is more complicated than previous
models, which takes both the generation of vertices and their
extinctions into consideration, and we call it BDN model.

So far, most of network models for complex systems ignore
the degenerations of vertices, but these phenomena really exist
and have a significant influence on the network topology.
Therefore, we should ponder both generation and degenera-
tion. In this model, the key issue is the death process. And in
the view of practical situation, the death follows the rule that
“the rich live while the poor die,” or “the rich are getting richer,
and the poor poorer.” That is to say, Barabási and Albert [3]
only consider half of the Matthew effect [31], and we extend
it to the aspect of poor.
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Fig. 5. BDN evolution. New vertices are generated by the rate λ and connect
to one existing vertex, old vertices degenerate by the rate ν, the process is
terminated at time 10.

The death mechanism is the crucial issue for BDNs. We
assume that the death time follows an exponential distribution
with parameter μ, indicating that the degeneration of old ver-
tices is also a Poisson process. The selection of one vertex to
die follows the Matthew effect, that is, the lower degree vertex
is more likely to die. To solve 
, the probability of existing
vertices to die, the value convert k̃i is required, that is

k̃i = kmax − ki

kmax − kmin
(41)

k̃i is also said to be the poor degree. Obviously, the low degree
vertex has a high value of k̃i.

Then, 
i is denoted as


i = k̃i
∑

j k̃j
(42)

which ensures that the poor is more likely to be perished and∑
i 
i = 1. Then, we utilize roulette to select the vertex to

be perished. By this mechanism, the degeneration process is
confirmed.

The complete construction process is as follows.
1) Initialization: Given N vertices as a nearest-neighbor

coupled networks, in which each vertex connects to its
K/2 neighbors on the left and the right. For every pair
of vertices, an extra connection is established by the
probability of p.

2) Growth and Extinction: Newly added vertices i are com-
ing by the rate at λ. For each new vertex, ηi edges are
connected to the existing vertices. The existing vertices
are gone by the rate at ν.

3) Connection and Disconnection: The probability of a
newly added vertex connected to an existing vertex is
decided by �k. The probability of an existing vertices
to die is decided by 
(ki).

4) Termination: Once the time reaches T , the algorithm
terminates and the network is output.

We demonstrates a BDN evolution. The initial network
refers to Fig. 1, and each new vertex connects to one existing
vertex. The process is displayed in Fig. 5.

Unfortunately, the dynamic method and probabilistic
approach cannot obtain the solution of the degree distribu-
tion of BDN, we still try to work it out and require further
studies.

IV. SIMULATION AND ANALYSIS

In this section, we focus on modeling process and displaying
the statistical degree distribution of proposed network mod-
els, besides, the robustness and vulnerability simulations are
carried out.

A. Network Modeling

Modeling of network is the foundation of our simulation,
and the random process is the linchpin of modeling. Therefore,
we mainly describe the simulation of random processes in this
section.

The key of an HPN is to simulate a Poisson process with λ,
in other words, a mutually independent exponential distributed
random sequence with expectation 1/λ is required. Then, our
method is as follows.

1) Set the values of λ and Tmax.
2) Generate exponential distribution random values with λ,

denoted as ti.
3) If cumulative time Ti ≤ Tmax, let Ti = Ti+ti, else output

the temporal series.
The temporal series of an NHPN is produced by the rarefac-

tion method, that is, assuming λ(t) ≤ λ, where λ is a constant,
{t1, t2, . . .} is the temporal series of a homogeneous Poisson
process with λ, for each ti, with the probability (λ(ti)/λ) to
save and 1 − (λ(ti)/λ) to abandon, then, the saved tempo-
ral series {t′1, t′2, . . .} follows the nonhomogeneous Poisson
with λ(t). The detailed process is as follows.

1) Produce the temporal series with parameter λ, denoted
as {t1, t2, . . . , tn}.

2) Generate a random number ri, if ri ≤ (λ(ti)/λ), ti is
saved, else ti is abandoned.

3) For those saved ti, remark them as {t′1, t′2, . . . , t′k} and
output.

For BDN, we employ a queuing system M/M/1/∞/∞. The
temporal series of generation and degeneration both follows
exponential distribution random sequences with expectation
1/λ and 1/ν. The system decides to serve the vertex by the
rule “poorer die” with rate ν, and records the leaving time.
The detailed process is as follows.

1) Produce the temporal series with parameter λ, denoted
as {t1, t2, . . . , tn}.

2) The system serves the vertices by the rate ν, records
their leaving time, {T1, T2, . . . , Tk}.

3) When Tmax is reached, output the temporal series.
Based on these counting processes, we display three net-

work models shown in Fig. 6.

B. Degree Distribution

Degree is a simple but significant character for a sin-
gle vertex in network, and the degree distribution is the
most important property and topology for complex networks.
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Fig. 6. Illustration for three different networks. Initial networks all start with ten nodes, each node connects to its two neighbors on the left and right, with
the probability 0.2 to add a path to the other node. The settings are (a) λ = 4, (b) λ(t) ≤ λ = 4, and (c) λ = 4 and μ = 1. The termination time Tmax = 50.

In this section, we use the statistical method to analyze degree
distribution and obtain a degree exponent from empirical data.

As we know, the degree distribution of most scale-free net-
works including our proposed models obeys the power-law
distribution, which can be mathematically denoted as

y = βx−γ (43)

where β is a normalization, and γ the power-law exponent.
Discrete empirical data, as circles in Fig. 7, are only approx-

imations of continuous mathematical power-law in line. The
task for us is to employ a simple power-law to more precisely
describe the data, thus we need to remove those complex fac-
tors as noisy data. There are many proposed algorithms to
solve this issue, such as the logarithmic binning [22], maxi-
mum likelihood estimation [23], [24], and so on [25]. Here,
we apply a numerical method.

From Fig. 7, we can see that, for the large degree k, the
deviation from the mathematical value is obvious. These tail
values are often caused by the statistical nature of the empir-
ical distribution, which appears that, at large k, the number
of vertices are one or zero, which causes noticeable noises.
To get rid of them, we set a noise threshold N for the data,
we remove Nt values from the empirical data as the statis-
tical noise. For example, for a data set with 1000 points, if
N = 0.005, that means we need to remove five highest degree
from this data as noises, see tail noises in red in Fig. 7. The
value of N varies in different networks to remove the long tail,
generally, 0.5%–2% in this paper. In addition, since the con-
nection follows a Gauss distribution η ∼ N(μ, σ 2), the value
of k below μ + 3σ also leads to noticeably noisy appearance,
therefore, these points are also removed, see head noises in
black in Fig. 7.

After noises are removed, the line fitting is required.
Assuming that the empirical data follow (43), as we operate
in log coordinate, the equation is logged as:

A

(
x1
x2

)

= b (44)

where A = (log x, 1), x1 = −γ , x2 = log β, and b = log y.
To get the best fitting line, we need to seek for the least

squared error, equationally, that is
{

min ‖b − Ax‖2

s.t. ATAx = ATb
(45)

Fig. 7. Sample of deviations from a mathematical power-law. The continuous
line is a mathematical power-law with γ = 3, and discrete points denote the
empirical data.

where x = (x1, x2). x1 in solution x for (45) is the slope of
the best fitting line. With this argument, we can determine the
plot of the degree distribution of a network.

By utilizing this method, we plot degree distributions of
three network models in double logarithmic coordinates and
obtain the slope, which is also the degree exponent. In this
simulation, we mainly consider three variables: the input rate,
connection and time. Specifically, for HPN, λ, μ, and t are
measured; for NHPN, λ(t) ≤ λ, μ and t are measured; for
BDN, λ, νd = 1/3, μ, and t are measured. One argument
is adjusted while other two are constant, so that we can
observe whether the degree exponent has a relationship with
these arguments. Detail argument settings and results of degree
exponents are listed in Table II including HPN, NHPN, and
BDN. For each, we increase λ from 4 to 12, μ from 10 to 50,
and t from 1000 to 5000, the corresponding degree exponents
γ are also listed.

From this table, we can draw the conclusion that, for all
three networks, the value range of degree exponents lies in
[2.7, 3.0], which is independent of λ, μ, and t.

We also demonstrate the degree distributions and expo-
nents in double logarithmic in Figs. 8–10. For clarity, we
only choose three values for each situation. Three figures
show the same trend, even with different λ [Figs. 8(a)–10(a)],
μ [Figs. 8(b)–10(b)], and t [Figs. 8(c)–10(c)], indicating that
they are all typical scale-free networks. However, due to
the rarefaction method we use, with the same argument, the
nonhomogeneous network possesses less vertices, therefore,
Fig. 8 shows fewer points than other two figures. And for
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TABLE II
DEGREE EXPONENTS FOR THREE KINDS OF NETWORKS WITH DIFFERENT ARGUMENTS

Fig. 8. Degree distributions of HPNs with different arguments in logarithmic coordinates. Arguments are set as (a) μ == 10 and t == 1000, (b) λ == 4
and t = 1000, and (c) λ == 4 and μ == 10.

Fig. 9. Degree distributions of NHPNs with different arguments in logarithmic coordinates. Arguments are set as (a) μ == 10 and t == 1000,
(b) λ == 4 and t = 1000, and (c) λ == 4 and μ == 10.

Fig. 10. Degree distributions of BDNs with different arguments in logarithmic coordinates. Arguments are set as (a) μ == 10 and t == 1000,
(b) λ == 4 and t = 1000, and (c) λ == 4 and μ == 10.

the same type of network, under the condition of same μ,
different λ and t display the approximate result since both
two arguments increase total number of vertices of networks
[see Figs. 8(a) and (c)–10(a) and (c)]. In addition, under the
condition of same λ and t, higher μ makes the points wider,
the reason is that μ determines the number of connections,
the high value will increase the degree of vertex, and enlarge
the distance of different degrees k, which makes the plot fatter
[see Figs. 8(b)–10(b)].

In brief, getting rid of the noise in the beginnings and tails
of empirical distributions, all three types of networks display a
good power-law character and follow our theoretical analysis.

C. Reliability of Networks

Complex network reliability indicates the ability of a com-
plex network to perform its original function even damaged
by natural or man-made attacks. Evaluations for reliability



FENG et al.: EVOLVING SCALE-FREE NETWORKS BY POISSON PROCESS: MODELING AND DEGREE DISTRIBUTION 1153

Fig. 11. Deliberate and random attack with different ratios to networks. Abscissa shows the ratio of attack and ordinate shows variation of average path
length after the attack L01. (a) HPN. (b) NHPN. (c) BDN.

Fig. 12. Deliberate and random attack with different ratios to networks. Abscissa shows the ratio of attack and ordinate shows variation of average clustering
coefficient after the attack C01. (a) HPN. (b) NHPN. (c) BDN.

are invulnerability and survivability, generally, measured by
average path length and clustering coefficient.

The first argument is the average path length, the reason for
choosing it is that it can perform the connectivity of network.
In general, the lower the average search step is, the better
the connectivity. Therefore, comparing the network before and
after the attack, we can learn the strength and hazard of the
attack [26]. Suppose l0 denotes the average path length of
the original network, l1 denotes the average path length after
the first attack, then

L01 = l1
l0

(46)

where L01 indicates the strength and hazard of the first attack.
Analogously, another argument for measuring reliability is

the clustering coefficient. As we know, the clustering coef-
ficient of one vertex indicates its local connectivity, so the
average clustering coefficient can denote the connectivity of
the whole network. Suppose c0 denotes the average cluster-
ing coefficient of the original network, c1 denotes the average
clustering coefficient after the first attack, then

C01 = c1

c0
(47)

where C01 denotes the strength and hazard of the first attack.
The other issue is the attack itself. Generally, there are two

kinds of attacks: 1) deliberate attack and 2) random attack.
The deliberate attack operates with certain strategies to remove
vertices and edges, and is usually caused by human factors.
Contrarily, the random attack removes vertices and edges with
no purpose, and is always caused by self factors.

The first experiment runs in the invariable scale of three
kinds of networks. The execution time of all networks is 500,
For HPN, the input rate λ = 4, for NHPN, the input rate
λ(t) ≤ λ = 4 which follows (33), and for BDN, the input
rate λ = 4 and output rate ν = 1. For each network, we
record its original average path length and clustering coef-
ficient as l0 and c0, then, attack networks deliberately and
randomly and record the length and coefficient after attack as
l1 and c1. Equations (46) and (47) are employed to calculate
the changing rate, the results of deliberate and random attack
are displayed in Figs. 11 and 12. From these two figures, we
can obviously see that all three networks display great vul-
nerability to deliberate attack. The change of average path
length increases intensively with the growth of attack ratio
while average clustering coefficient drops rapidly, the under-
lying reason is the inhomogeneity of degree distribution, so
that the less vertices occupy the most degrees, once they were
removed from network, most connections are cut off, short-
cuts are also destroyed and gathering degree decreases, on the
diagram, it displays the L01 grows [see Fig. 11(a)–(c)], those
plots marked by circles, and C01 drops [see Fig. 12(a)–(c)],
those plots marked by circles. Unlike the deliberate attack,
all three networks display strong robustness to random attack,
both the average path length and clustering coefficient keep
steady, since the most vertices occupy the low degree, which
is less important in the whole network, and the random attack
mostly works on these low degree vertices. Therefore, the con-
nectivity and clustering of the whole network hardly change,
on the diagram, it displays that L01 and C01 keep as straight
lines [see Figs. 11(a)–(c) and 12(a)–(c)], those plots marked
by stars.
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Fig. 13. Deliberate and random attack to networks with different scales. Abscissa shows the scale of network and ordinate shows variation of average path
length after the attack L01. (a) HPN. (b) NHPN. (c) BDN.

Fig. 14. Deliberate and random attack to networks with different scales. Abscissa shows the scale of network and ordinate shows variation of average
clustering coefficient after the attack C01. (a) HPN. (b) NHPN. (c) BDN.

The other experiment focuses on the relationship between
reliability and scale of the network. The argument setting is as
follows: for HPN, the input rate λ = 4, for NHPN, the input
rate λ(t) ≤ λ = 4 which follows (33), and for BDN, the input
rate λ = 4 and output rate ν = 1. The scales of network are set
as 400, 800, 1200, 1600, 2000, 2400, 2800, 3200, 3600, and
4000. The attack ratio is 0.5 which means half of vertices are
removed. Plots of L01 and C01 are displayed in Figs. 13 and 14.
From these figures, we can see that the larger the networks are,
the less stable they are. The reason is that, in the constructing
processes of all three networks, the more vertices added to
network means that the highest degree will increase contin-
uously. Deliberate attack first aims at these highest degree
vertices, once they are removed from the network, the distance
of their neighbors will potentially increase [see Fig. 13(a)–
(c)], those plots marked by circles, and the clustering will
decrease [see Fig. 14(a)–(c)], those plots marked by circles.
However, with the increasing of network scale, random attack
has a very low probability to remove high degree vertex, so
the large network shows robustness to it [see Figs. 13(a)–(c)
and 14(a)–(c)], those plots marked by stars.

Both two simulations show that three proposed network
models are “robust yet fragile,” which is a basic and
significant character for complex systems and scale-free
networks [27], [28].

V. CONCLUSION

Network modeling and degree distribution, which are the
most significant research domains for complex networks,
demand greater attention and further study. In this paper,
we introduce three novel network models, based on the

homogeneous Poisson, nonhomogeneous Poisson, and birth
and death process. Additionally, we analyze their degree distri-
bution, and obtain degree exponents by applying the dynamics
method and probabilistic approach. Conclusively, simulations
of network construction, statistical degree distribution and net-
work reliability are carried out to show that our models are
typical scale-free networks.

This paper reveals that, regardless of the input rate and con-
nections of individuals, once the network constructing mech-
anism is decided, the topology such as the degree distribution
of complex networks remains unchanged. More practically, the
war or financial crisis will not change the scale-free charac-
ter of social or financial networks, which can be described
as a nonhomogeneous Poisson process for complex systems
applied to most real networks. Further, the λ and t determine
the scale of network, and our proof indicates that the degree
exponent is free of these two arguments, that is to say, no mat-
ter the larger scale or smaller scale (which may be considered
as the subgraph of the large) networks are, their degree dis-
tributions are identical. In that sense, we can study the small
or original type of complex systems to reveal the topology of
larger scale. Additionally, our models with different input rates
follow and further confirm the definition of complex systems
and networks proposed by Barabási [29], “independent of their
age, function, and scope, converge to similar architectures.”

However, we have a dilemma in solving the degree expo-
nent of BDN, which is more close to practical complex
networks. Besides, the constructing mechanism is required to
be more concrete to simulate the reality. Since the network
modeling and degree distribution are the key issues for com-
plex networks, it is worth exploring for the perfect solution to
build fit models and seek for their degree exponents.
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