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Since the past few decades, scale-free networks have played an important role in studying the topolo-
gies of systems in the real world. From the traditional perspective, the scale of network, the number
of nodes, keeps growing over time without decreasing, leading to the non-stationarity of the scale
which is against the real networks. To address this issue, in this paper, we introduce both increase
and decrease of vertices to build the evolving network models based on birth and death random
processes which are regarded as queuing systems in mathematics. Besides the modeling, the scale
of networks based on different random processes is also deduced to be stationary and denoted by a
specific probabilistic expression irrelevant to time. In the simulations, we build our network models
by different types of queueing systems and compare the statistical results with theories to show the
validity and accuracy of our proposed models. Additionally, our model is applied to simulate and
predict the populations of some developed countries in recent years. Published by AIP Publishing.
https://doi.org/10.1063/1.5038382

The modeling of the complex networks with both birth
and death processes is a challenging task for the network
science. The task is to properly build these networks and
describe them in a mathematical expression. The death
process significantly affects the structure and topologies
of the complex networks, but it is often ignored. The pre-
sented paper shows a novel network model regarding both
the birth and death of vertices in the network, utilizes the
different queueing systems to express the models, and cal-
culates their statistical results. Based on this model, we
define the number of vertices as the scale of a network
that will stay stationary as time goes by, which can be
considered as a topological property of complex networks.
Our simulations suggest that the scale of this model can
describe the population network effectively.

I. INTRODUCTION

At the end of the last century, the proposition of the con-
ception of scale-free (SF) networks successfully created a sen-
sation, and the researchers in multidisciplinary fields become
aware of the importance of network science and gradually
made significant achievements. As we know, many commu-
nication, social, and biological systems regarded as complex
networks. For better understanding real networks, utilizing
the reasonable models to simulate these real-world networks
is a significant issue considered as the primary research for
network science. Besides, the topology properties which stay
constant in the continuous process significantly influence our
cognition for the network structure.

a)Electronic mail: fmy1987@sina.com
b)Also at Department of Physics, Humboldt University, Berlin 12489,
Germany.

In this paper, we focus on the network modeling. Various
network models along with the research of their topologies
were springing up after the SF networks were proposed. It
is suggested that the variation on connections and vertices is
important for network modeling. Developing and decaying
networks2 and accelerating growth networks were the early
models to notice the connection variety. Recently, a model
based on the age of vertices3 was proposed, and it studied
the influence of age on the network structure. Soon, a net-
work with variable arrival rate4 was proposed and further
proved that the rate is independent of the degree distribution.
Besides, the rule of connection is also considered as the key
of a network model. The well-known local-world evolving
network,5 and its latest extension model like the neighborhood
log-on and log-off model,6 and weighted local-world evolv-
ing network7 presented the relationship of vertices based on
the local priority. There are other network models considering
more complex facts. The dynamical network models based
on varying time8 showed the temporal influence; another
complex network model was constructed by a time series
which inherits the main properties of the time series in its
structure,9 and nonparametric Bayesian networks10 made it
possible to specify flexible model structures and infer the
adequate model complexity from the observed data, and a
statistical mechanics approach was used for the description
of complex networks.11 Recently, some researchers noticed
that the networks keep not just growing but decreasing in the
meantime, for example, a theoretical random network stud-
ied both the death and birth of vertices12 and an arbitrary
symmetric complex network with delay-coupled oscillators is
investigated by the oscillation death.13 Based on these net-
work models, topology properties that display a stationarity
during the growing process of networks are usually discussed.
The Power-law degree distribution is considered as the main
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topology property for the SF networks which is independent
of time.14 Then, other researchers tried numerical methods to
give an analytical expression for different networks, and the
most recent method used the fastest mixing reversible Markov
chains.15 Besides, the average path length is another topology
property frequently investigated. Newman et al. first calcu-
late the average path length of both small-world models by
the renormalization group method16 and mean field solution.17

Other properties such as the coreness,18,19 betweenness,20 and
influential node21 have been discussed animatedly in recent
years. All their pioneering works on topology properties pro-
vided the idea to solve topology properties by the probabilistic
method.

To propose a novel evolving network model and study its
potential topology property, in this paper, based on the exist-
ing study, we introduce the birth process and death process to
the evolving network modeling for simulating those real net-
works driven by growth and decrease. To better understand
the process, the queueing systems are creatively adopted to
describe all vertices in the network as the customers, their
birth process as the input process, and their stays in the net-
work as a service process. Different from the description of
“scale” in the SF networks, we define the scale of networks
as the number of vertices in network and find that it will
stay stationary as time goes by, which is considered as a
typical topology property. Inspired by other studies on topol-
ogy properties, we prove the existence of stationary network
scale and offer its analytic expression by the probability the-
ory. In the simulation, we compare the statistical results of
our proposed models with theoretical results. In the realistic
perspective, we also compare our models with the popula-
tion of some developed countries during the recent 55 years,
indicating that our model is potentially able to predict the
population.

The organization of this paper is as follows: A detailed
presentation of the network model based on birth and death
process and its theoretical study is provided in Sec. II. Simu-
lations are carried out in Sec. III to demonstrate the validity
and accuracy of our model to the theoretical result and real-
world population. Finally, some discussions, conclusions, and
outlooks are given in Sec. IV.

II. COMPLEX NETWORKS BASED ON BIRTH AND
DEATH PROCESS

In contrast with traditional growing networks, we intro-
duce a novel modeling method based on birth and death
process applying the queueing theory. As we mentioned
above, most complex networks have a distinct birth and death
phenomenon displaying the arrival of new vertices and the
extinction of obsolete vertices.

If there are n vertices in the network, new arrivals enter
the network at an exponential rate λn, and obsolete vertices
leave the system at a specific rate μn; we consider that this
network follows a birth and death process. Furthermore, sup-
pose that each vertex in the network is a customer and the
mechanism of the extinction is the server, then the network
itself can be described as a queueing system. Once a vertex
has been served, it is dead and wiped from the network. In

the perspective of queueing theory, the number of vertices in
the network is denoted as the queue length, the waiting time
covers from the arrival of a vertex till it gets service, and the
lifespan of a vertex is the sum of the waiting time and service
time. As the waiting time is long enough, the service time can
be ignored. Based on these assumptions, we next present the
modeling of networks based on birth and death process (NBD)
and its relevant theories.

A. Modeling of NBD

First, we introduce the process of constructing an NBD
as an SF network. The generation of vertices follows a Pois-
son stochastic process with the parameter λ, for each arrival,
m links are connected to the existing vertices by the prob-
ability that higher degree has the preference. Once being
connected, the vertices are regarded as customers under ser-
vice with infinite servers, and their extinction follows a spe-
cific process. As this NBD is a typical queueing system, for
clear saying, we introduce this model by defining its basic
elements.

Queueing System of NBD
Input process. The events of vertex birth usually occur

“at random”; the Poisson process is, therefore, an appropriate
model for describing them. For a queueing system of NBD,
we assume that the new vertices are input at a rate of λ.

Service mechanism. The network itself can be connected
to as many vertices as possible, indicating that the number
of vertices under service is without limit, numerically from
0 to ∞. The servers work in parallel which means that all
customers are under service at the same time. Besides, the
events of vertex death are more complicated than that of birth.
Some of them just follow the Poisson process which means
that they have exponential service time with the parameter
μ, and the population networks is a typical example of a
mortality rate. On the other hand, for those NBD in compe-
tition, i.e., the economic networks, their service time is not
merely exponential, but we generalize that they are distributed
independently and identically with a general distribution
(i.i.d.) G(t).

System capacity. In a queueing system, the number of
customers waiting at a time is generally significant. However,
in the practical situation, the servers are always sufficient,
waiting time thus is avoided for NBD.

Queueing discipline. The rule that the server accepts cus-
tomers is mainly considered for the queueing discipline. In
this paper, we focus on the rule first come, first serve (FCFS)
which is very common for NBD based on the lifespan, such
as population networks.

From the queueing system of NBDs, we write their
symbolically representing queueing systems as M/M/∞ or
M/G/∞ depending on their properties, where M denotes the
Poisson arrival or leave, G means the general service, and ∞
is the number of servers.

The queueing system defines the input and output process
for vertices of a NBD, but the connection rule is still required
to complete the modeling. Hence, we propose the modeling
processes of theoretic NBD based on M/M/∞ and M/G/∞
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consisting of initial network, growth mechanism, preferential
connection, and end time.

Modeling of a NBD
Initialization. Given N vertices form a nearest-neighbor

coupled network, and each vertex in this network connects to
its K/2 neighbors on the left and K/2 neighbors on the right.
For any pair of vertices, an extra connection is established by
the probability of p.

Growth and extinction. As mentioned in the queueing
system, the new vertices arrive at a specific rate λ. For each
new vertex denoted as i, m edges connect to the existing
vertices.

For the M/M/∞ system, the existed vertices are gone
by a specific rate μ, denoting that the service time of vertices
follows

T(t) = 1 − e−μt, t ≥ 0. (1)

For the M/G/∞ system, the service time of existed vertices
follows a general distribution (i.i.d.) G(t) with a certain rate

μ =
[∫ ∞

0
tdG(t)

]−1

. (2)

Connection and disconnection. The probability of a new
arrival connected to an existing vertex is decided by �i,

�i = ki∑
j kj

. (3)

And once a served vertex is gone, its related connections are
released.

Termination. The limitation of time is manually set to T .
Once the time is up, the algorithm terminates, and the network
is the output.

Generally, the initial network is small but highly con-
nected, e.g., ARPANET, the precursor of the Internet, has
only four vertices dispersed in four universities and connected
to each other. Based on these considerations, the network is
therefore assumed to initialize as a small-world network, espe-
cially, the NW small-world model. The growth and extinction
is the key process of the model, the input of which follows
a Poisson process discussed above. Moreover, for the output,
we consider two situations, one of which follows a Poisson
process which fits those similar to life-span networks such as
the population networks, and the other is universal for those
common networks with different death rules, such as survival
of the fittest; one of the examples for this kind of network
is the collaborate network. For the Connection and Discon-
nection, to simplify the model, we employ the preferential
attachment shown in Eq. (3) to make the high degree indi-
vidual more likely to be connected. In the case of death of one
vertex, we wipe all of its links from the model. Consider that
the model is required to control manually, we set a termination
time to stop the model construction.

Referred to the queueing system and model process of the
NBD, we illustrate the construction process of an NBD as an
instant in Fig. 1. The initial network (a) is a small-world net-
work, each vertex connects to its left and right neighbors, and
an extra connection is linked. Each new vertex brings two con-
nections to the network. For simplicity, we let the system be

M/M/∞, that is, the birth follows a Poisson process with the
parameter λ. Meanwhile, the death time follows an exponen-
tial distribution with the parameter μ. By constructive time,
we can calculate λ = 5

10 for V6, V7, V8, V9, V10, and μ = 4
10

for V3, V6, V2, V1. The final network (d) displays a nonuniform
degree distribution, the poor vertices with the degree below
3 make up a majority part (83.3%) of this network, and the
rich ones with the degree upon 3 are in the minority (16.7%),
which is commonly referred to as “the Matthew effect” or
“the rich-get-richer phenomenon,” and also the property of a
Power-law distribution for the SF networks.

B. Stationary analysis of NBD scale

As the modeling process of NBD has been illustrated,
in this subsection, we propose a new concept of the station-
arity of NBD scale, concretely, that is, as time goes by, the
probability of network scales tends to be steady under some
conditions. These conditions are very significant for studying
the stability of NBD which is also the primary analysis of our
research.

Before the theoretical analysis is carried out, we first
introduce some required notations and definitions. {N(t),
t ≥ 0} denotes a stochastic process of the scale of a NBD,
its state space � = {1, 2, . . .}, indicating the set of possible
values of N(t). We let pmn(�t) denotes the probability that
the scale m will next transfer into n in the interval �t and is
expressed as a conditional probability,

pm,n(�t) = P{N(t + �t) = n|N(t) = m}, m, n ∈ �. (4)

Besides, we let

pn(t) = P{N(t) = n}, n ∈ � (5)

denote the probability that the number of network vertices is
n at time t. And giving t → ∞, if the probability converges to
some values, then define the limiting probability

pn = lim
t→∞ pn(t), n ∈ � (6)

as the stationary probability distribution or steady-state prob-
ability.

Consider that there are two kinds of potential services as
M/M/∞ and M/G/∞, we study each of them in Secs. II B 1
and II B 2.

1. M/M/∞ queueing systems

For the M/M/∞ systems of NBD, we first carry out two
lemmas for the proof of stationarity. In the state space �,
we have

Lemma 1. Assuming that the limiting probability pn

exists, n ∈ �, then

lim
t→∞ pn(t)

′ = 0. (7)

Proof. Suppose that there exists x ∈ �, that makes
lim

t→∞ px(t)
′ = s, in which s > 0. By the definition of limitation,
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FIG. 1. An illustration of a NBD based on the queueing system of M/M/∞ to show the constructive process for modeling, the constructive time span T of
which is supposed from 0 to 10. Each subgraph is intituled the input and output series which denote the birth of new vertices and death of existing vertices,
and the vertices in double boxes indicate that they are under service and will output next time. For each new vertex, two connections are linked to the existing
vertices.

we know that there exists a t1, for arbitrary ε and those t ≥ t1,

| px(t)
′ − s |< ε (8)

indicating that px(t)
′
> s + ε.

Therefore, we can deduce the limitation,

lim
t→∞ px(t) = lim

t→∞

[
px(t1) +

∫ t

t1

px(y)
′
dy

]

> px(t1) + lim
t→∞(s + ε)(t − t1) = ∞, (9)

which is against the definition of probability which is required
to be lesser than or equal to 1. Then, lim

t→∞ px(t)
′ = 0.

The result follows. �
Supposing that the arrivals of vertices are assumed to

occur in a Poisson process with rate λ and the service times of
vertices have an exponential distribution with a parameter μ,
then we can say

Lemma 2. The transition probabilities of NBD based on
M/M/∞ systems are

pm,n(�t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ�t + o(�t), m = n + 1

mμ�t + o(�t), m = n − 1

1 − (λ + mμ)�t + o(�t), m = n

o(�t), |m − n| ≥ 2

.

(10)

Proof. According to the Poisson process, during �t, the
probability that only one vertex arrives is λ�t

1! e−λ�t, the prob-
ability the service is unfinished is e−μ�t. Besides, the prob-
ability that n (n ≥ 2) vertices arrive and n − 1 vertices have
been served is o(�t). Thus, applying Taylor’s formula, we
yield the transition probability

Pm,m+1 = λ�t

1!
e−λ�t · e−μ�t + o(�t)

= λ�t[1 − (λ + μ)�t + o(�t)] + o(�t)

= λ�t + o(�t). (11)

Analogously, during �t, the probability that none of the new
vertices arrives is e−λ�t, and for m vertices, only one has

been served by any one of i − 1 servers is
m∑

k−1
(e−μ�t)k−1(1 −

e−μ�t = 1 − e−mμ�t. The probability that n − 1 (n ≥ 2) ver-
tices arrive and n have been served is o(�t). Then, we
get

pm,m−1 = e−λ�t(1 − e−mμ�t) + o(�t) = mμ�t + o(�t).
(12)

Obviously, the probability that none of the vertices arrives or
leaves is

pm,m = 1 − (λ + mμ)�t + o(�t) (13)
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and also for |m − n| ≥ 2,

pm,n = o(�t). (14)

Above all, combining Eqs. (11)–(14), the results follow.
�

Theorem 1. For the M/M/∞ systems of NBD, sup-
pose that the initial condition follows that p1(0) = 1 and
pn �=1(0) = 0, let t → ∞, the stationary distributions of scale
{N(t), t ≥ 0} exist, and follow

pn = λn

n!μn
e− λ

μ . (15)

Proof. We first prove the existence of stationary distribu-
tion, equivalent to proving that {N(t), t ≥ 0} is a homoge-
neous irreducible continuous Markov chain.

Referring to Eq. (4), we know that the transition proba-
bility is only relevant to the time interval �t but irrelevant to
the starting time t, indicating that the chain is homogeneous.

For any n, m ∈ �, according to Lemma 2, there always
exists a certain t following pm,n(t) > 0; there also exists a t
that lets pn,m(t) > 0, denoting that all states in � are com-
municated leading to that � cannot be divided into a smaller
subset. Therefore, the chain is irreducible.

Again to Eq. (4), we can easily derive that lim
t→o+

pn,n(t) =
0 while lim

t→o+
pm,n �=m(t) = 0, that is

lim
t→o+

pm,n(t) =
{

0, m �= n

1, m = n
, (16)

the condition of continuity holds.
In summary, the chain {N(t), t ≥ 0} is homogeneous, irre-

ducible, and continuous, so its stationary distribution exists.
As the stationary distribution exists, then we try to solve

its explicit expressions.
Consider an extremely small time interval �t, the varia-

tion of probability pmn(t) is expressed as

�P = pm,n(t + �t) − pm,n(t)

=
∑
l∈�

pm,l(t)pl,n(�t) − pm,n(t) (17)

obviously, utilizing the initial condition with the formula of
Total Probability, we have

pn(t) =
∑
m∈�

P{N(0 + �t) = n|N(0) = m}

=
∑
m∈�

pm(0)pm,n(t) = pm,n(t). (18)

Employing this equation, Eq. (17) is rewritten as

�P =
∑
l∈�

pl(t)pl,n(�t) − pn(t) = pn−1(t)[λ�t + o(�t)]

+ pn + 1(t)[(n + 1)μ�t + o(�t)] + pn(t)[1 − (λ

+ nμ)�t + o(�t)] +
∑

|l−n|≥2

pl(t)o(�t) − pn(t)

= λ�tpn−1(t) + (n + 1)μ�tpn+1

− (λ + nμ)�tpn + o(�t). (19)

Let �t → 0, the formula is denoted as

p′
n(t) = lim

�t→0

�P

�t

= λpn−1(t) + (n + 1)μpn+1(t) − (λ + nμ)pn(t), (20)

specifically, for n = 0, we have

p′
0(t) = −λp0(t) + μp1(t). (21)

For t → 0, by Lemma 1, we obtain the following equations:{
λp0(t) − μp1(t) = 0

λpn−1(t) + (n + 1)μpn+1(t) − (λ + nμ)pn(t) = 0
, (22)

along with
∞∑

n=0
pn = 1, the solution is

pn = λn

n!μn
e− λ

μ . (23)

The results follow. �
Additionally, by Eq. (22), we can easily obtain the tran-

sient scale distribution of NBD based on M/M/∞ systems

pn(t) = exp

[
− λ

μ
(1 − e−μt)

]
1

n!

[
λ

μ
(1 − e−μt)

]n

, (24)

which is useful for analyzing other quantities of interest for
NBD model.

Theorem 1 gives the steady-state probabilities for the
vertex number of networks, by which we can obtain some
statistical properties of networks.

Theorem 2. The average scale of NBD based on the
M/M/∞ systems is

E(N) = λ

μ
(25)

the average staying time of each vertex is

E(T) = 1

μ
(26)

and the standard deviation of the scale is

σN =
√

λ

μ
. (27)

Proof. The average scale is also the expectation of the
result of Theorem 1 expressed as

E(N) =
∞∑

n=0

npn = λ

μ
e− λ

μ

∞∑
n=1

λn−1

μn−1(n − 1)!
= λ

μ
(28)

according to the Little equation, the staying time is

E(T) = Nave

λ
= 1

μ
(29)

and the standard deviation is the square root of its variance,
thus

σN =
√

E(N2) − E(N)2

=
√√√√ λ

μ
e− λ

μ

∞∑
n=0

(n + 1)λn

μnn!
− λ2

μ2
=

√
λ

μ
. (30)

The results follow. �
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From Theorem 2, we can estimate the expectation scale
of the NBD and also the lifespan of a vertex; besides, the stan-
dard deviation is a measure to quantify the amount of variation
or dispersion of a set of scales.

2. M/G/∞ queueing systems

Apparently, M/G/∞ queueing systems differ from the
death process of M/M/∞, which displays a more general
way for the extinguishment of network vertices but makes this
process non-Markov; in other words, the methods above based
on the Markov chain have no effect. Therefore, we construct
a cumulative conditional probability to address the issue.

Suppose that S denotes the service time, and N(t) is the
number of vertices at time t, we introduce the process C(t)
to accumulate the number of vertices before time t. Then, we
have

Lemma 3. The number of vertices at time t and those that
arrive before time t follows the conditional probability

Pm,n(N |C, t) = P{N(t) = n|C(t) = m}

=
⎧⎨
⎩

m!F(t)n[t − F(t)]m−n

tmn!(m − n)!
, n ≤ m

0, n > m
, (31)

where F(t) = ∫ t
0 [1 − G(t − x)]dx is the complementary dis-

tribution and G is the probability distribution of S.
Proof. Consider that the service time is S, at time t, one

vertex is still in the network, which means its arrival time x
follows that t − S < x < t. As we know, the arrival of vertices
follows a Poisson process, then the number of vertices that
arrive t before time is uniformly distributed in [0, t]. Thus, the
probability that a vertex which arrives before time t but is still
in the network is

X (t) =
∫ t

0

P[S > t − x]

t
dx =

∫ t

0

1 − G(t − x)

t
dx. (32)

At time t, consider that the arrival time of each vertex is i.i.d.,
Pm,n(N |C, t), the probability of the number of vertices at time
t and those that arrive before time t is binomially distributed.
Obviously, for those n > m,

Pm,n(N | C, t) = 0, (33)

otherwise n ≤ m, with F(t) = tX (t),

Pm,n(N | C, t) =
(

n

m

)
X (t)m[1 − X (t)]m−n

= m!F(t)n[t − F(t)]m−n

tmn!(m − n)!
. (34)

The result follows. �
Then, we study the steady probability distributions for

those NBD based on M/G/∞ systems.
Theorem 3. For the M/G/∞ systems of NBD, suppose

that the expectation of death process {G(t), t ≥ 0} exists, let
t → ∞, the stationary distributions of scale {N(t), t ≥ 0}
exist, and follow

pn = {λ ∫ ∞
0 [1 − G(x)]dx}n

n!
e−λ

∫ ∞
0 [1−G(x)]dx. (35)

Proof. First, we prove the existence of stationary distribu-
tions. Referring to Lemma 3, {A(t), t ≥ 0} follows a Poisson
process, we employ the total probability formula and get

pn(t) = Pm,n(N |C, t)P[C(t) = m]

=
∞∑

m=n

m!F(t)n[t − F(t)]m−n

tmn!(m − n)!

(λt)n

n!

= [λF(t)]n

n!
e−λF(t). (36)

Apparently, it is a nonhomogeneous Poisson process. There-
fore, its limitation exists can be interpreted as the limitation of
F(t) exists,

lim
t→∞ F(t) = lim

t→∞

∫ t

0
[1 − G(t − x)]dx

=
∫ ∞

0
[1 − G(y)]dy = E[G(t)]. (37)

And we know that the expectation of {G(t), t ≥ 0} exists;
therefore, the limitation of pn(t) also exists.

Furthermore, with Eqs. (36) and (37), we have the sta-
tionary distributions

pn = lim
t→∞ pn(t) = {λ ∫ ∞

0 [1 − G(x)]dx}n

n!
e−λ

∫ ∞
0 [1−G(x)]dx.

(38)

The results follow. �
From the results, we can see that if we let μ−1 = ∫ ∞

0 [1 −
G(x)]dx, the results are the same as that of Theorem 1 in form.
Also, we deduce some of the statistical properties.

Theorem 4. The average scale of NBD based on the
M/G/∞ systems is

E(N) = λ

∫ ∞

0
[1 − G(x)]dx, (39)

the average staying time of each vertex is

E(T) =
∫ ∞

0
[1 − G(x)]dx, (40)

and the standard deviation of the scale is

σN =
√

λ

∫ ∞

0
[1 − G(x)]dx. (41)

Proof. Similar to Theorem 2, the expectation is expressed
as

E(N) =
∞∑

n=0

npn = λ

∫ ∞

0
[1 − G(x)]dx (42)

the staying time is the expectation of {G(t), t ≥ 0} which is
deduced in Eq. (37). And the standard deviation of the scale
is square root of the expectation

σN =
√

E(N) =
√

λ

∫ ∞

0
[1 − G(x)]dx. (43)

Therefore, the results follow. �
Apparently, these statistical properties are more general

expressions, and M/M/∞ is only one typical type that fits
these properties.
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From the above derivations, we can conclude that
whether NBD of M/M/∞ or its general M/G/∞ systems,
the scale will stationarily distribute as a Poisson distribution
as the time goes by.

III. SIMULATIONS AND ANALYSES

From this section, we start to verify the statistical prop-
erties of NBD by the simulations of proposed models and
practical models which are supposed to follow the stationary
theory of Sec. II.

First of all, we display an illustration of an NBD model
as an example. Considering the model in Sec. II A, we set
the initial networks as that N = 100, K = 2, and p = 0.5. For
the growth and extinction, we choose the M/M/∞ system,
and let λ = 2, μ−1 = 100. For a clear illustration, we set t =
1500, and the connection each time m = 5. As a result, the
network is drawn and shown in Fig. 2. As we can see from this
figure, the vertices in the center have a higher degree, while
those in the surrounding have a lower degree, and obviously,
vertices in lower degree are in the majority, which means that
this model is a typical SF network. Besides, the size of vertices
denotes their ages in the network. The bigger ones mean a
longer stay, which are more easily isolated since their friends
cannot possibly stay that long as they do.

A. Simulations of proposed models

In this subsection, we try to simulate different NBD and
obtain the statistical results, including the scale, stationary dis-
tribution, etc. From the proposed models, they are compared
with the theoretical results to verify the validity and accuracy.
Furthermore, we use the scale of our models to simulate the

FIG. 2. An illustration of an NBD model based on the queueing system of
M/M/∞ at the time of 1500, with the parameters λ = 2 and μ−1 = 100.
Each vertex denotes a living individual while the connections reveal their
relationships at current time, and its size shows age in the network.

number of population of different countries from the practical
perspective.

1. M/M/∞ systems

These simulations focus on the study of scales of NBD
based on M/M/∞ systems; according to our theoretical anal-
ysis, as the time t goes by, they are decided by the input rate λ

as well as the output rate μ. Therefore, to simulate these sys-
tems, we control three parameters λ, μ, and t, where λ is the
parameter of an exponential distribution to generate the tem-
poral series of a Poisson process and the same to μ, t is set as
a large number to obtain stationary results.

In the following experiments, we select three couples of
(λ, μ), and they are (2, 50), (2, 100), and (4, 100) different in
the last and first numbers for contrast, to construct NBD based
on M/M/∞ systems. To produce the sequences for birth and
death of vertices, we mainly employ the function poissrnd().

The results of scale varying with time are shown in
Fig. 3(a). For better stationary results by acquiring large
enough time, we let t be 104 and record the scale of each
NBD as time passes by in a half-log coordinate. The reason we
utilize the half-log coordinate is to better illustrate the ascent
stage and the stationary process of plots.

We can clearly see that the results show that the station-
arity of scale exists as Theorem 1 describes, all three datasets
finally approach to stationarity after a short time (t = 102),
and they all steadily float within bounds. In addition, as
Theorem 2 describes, the expectation value of the number is
decided by the product of λ and μ−1 which approaches to a
stationary value, and the standard deviation is the square root
of expectation evaluating the dispersion degree to the expec-
tation, the results of these three datasets precisely follow the
rule. In detail, after t = 102, with the same μ−1 = 100, the
λ = 4 marked by purple squares approaches to a twice higher
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FIG. 3. Statistical results of three datasets with different parameters of NBD
models based on M/M/∞. (a) Scale varying with time. (b) Scale statistical
distribution and comparison.
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TABLE I. The statistical results of scale distributions of NBD with different
λ and μ.

λμ−1

Properties 2 × 50 2 × 100 4 × 100

Expectation 98.46 198.94 397.54
Standard deviation 9.74 14.57 20.49
Correlation coefficient 97.05% 97.24% 97.75%

value and fluctuates more extensive than λ = 2 marked by red
circles. And with the same λ = 2, the μ−1 = 100 marked by
red circles approaches to a twice higher value and fluctuates
more extensively than μ−1 = 50 marked by green triangles.
In other words, the higher λ and μ−1 give the result to higher
stationary value and dispersion degree.

In addition, the probability distribution of scale is shown
in Fig. 3(b). Apart from the figure of scale by time, in this
figure, we record the frequency of each scale during the
time of 104, and by the law of large numbers calculate their
percentages as probabilities.

According to our theory, the scale should be a homoge-
neous Poisson distribution with parameters λμ−1. Obviously,
from the results, all three datasets are symmetrical Poisson
distributions following the theorem. Furthermore, we can see
the expectation value more clearly from this figure. They are
100 marked by green triangles, 200 marked by red circles,
and 300 marked by purple squares of central values, which
are all products of λ and μ−1. The same to the deviations,
with the increase of λμ−1 from left to right, the distribu-
tions become wider, which indicates that the deviations are
larger. Finally, to further verify our theory, we compare the
scale distributions of our models with totally theoretical Pois-
son distributions. The parameters λp of theoretical Poisson
distributions are separately setting as 100, 200, and 400 cor-
responding to the dataset of our models, and shown by blue
dots in Fig. 3(b).

The correlation coefficient is utilized to calculate the sim-
ilarity of our data and theoretical Poisson distribution, which
is denoted as

ρX ,Y = E{[X − E(X )][Y − E(Y)]}
σX σY

, (44)

where X is the dataset of our models, and Y is the dataset
of Poisson distribution. Then, we obtain the correlation coef-
ficient of three comparisons; they are 97.05%, 97.24%, and
97.75%, high enough to show that our scale distributions are
very close to the theoretical values, indicating that the scale of
our NBD model technically follows a Poisson distribution as
our theorem describes.

More concretely, all statistical results are shown in Table I
for a clear illustration. Overall, our simulations tell that the
scale of NBD model based on M/M/∞ will become station-
ary as time goes by, and the distribution follows a homoge-
neous Poisson distribution, which is perfectly in accord with
Theorems 1 and 2.

2. M/G/∞ systems

As we described above, there exist many other expres-
sions for death process of individuals except lifespan. There-
fore, the M/G/∞ system is applied to denote these more
general NBD models. And we try to simulate these NBD mod-
els based on the M/G/∞ system in this subsection to show
their validity.

In particular, we mainly employ three kinds of distribu-
tions for the general distribution G to show different death
mechanisms. The first one follows a uniform distribution
which denotes that the vertices of NBD are equal to die
without distinction (we use R in short to express this simu-
lation), and the parameters a, b are employed to determine the
range of uniform distribution. The other one is a log-normal
distribution that mainly describes the uneven death mecha-
nism in economics that the rich live while the poor die (L,
in short, is to denote this simulation), and the parameters μ,
σ are used to describe this distribution. The last simulation
focuses on Pareto distribution, also known as Power-law dis-
tribution, and is used in the description of social, scientific,
geophysical, actuarial, and many other types of observable
death mechanisms, which makes the high degree vertices live
and low degree ones die (we employ P to denote this simu-
lation), and the parameters α, β are utilized to generate this
distribution.

In the following simulations, we still use function pois-
srnd() to generate vertices. For R, we use function rand()
for death; three couples of (λ, α, β) are selected as simu-
lated objection, and they are (2, 40, 60), (2, 80, 100), and (4,
80, 100). For L, function lognrnd() is employed to determine
death, we also simulate three couples of (λ, μ, σ ), which are,
respectively, (2, 3.42, 1), (2, 4.11, 1), and (4, 4.11, 1). And
for P, we apply function pareto() to simulate three couples of
(λ, xmin, k), which are (2, 25, 3), (2, 50, 3), and (4, 50, 3) in
detail.

The results of R, L, P are displayed in Figs. 4(a), 5(a),
and 6(a). Once again, for all simulations of R, L, P, we let t
be 104 to guarantee that the time is large enough and plot the
scales of all NBD varying with time in a half-log coordinate
for a clear illustration.

According to Theorem 3, as the time goes by, the station-
ary scale distribution of NBD with a general death process
exists. Obviously, from the results, we can say that all three
sets of three different distributions including uniform, log-
normal, and Pareto, regarded as general distributions for death
process, finally stay stationary after a short time (approxi-
mately t = 10−2). Considering Theorem 4, the expectation
of three different distributions has different results based on
their probability distribution functions G(t), and furthermore,
their parameters. As a result, the expectations particular for
each death distribution in turn are E(NR) = 1

2λ(a + b) for R,

E(NL) = λeμ+ σ2
2 for L, and E(NP) = λαβ

β−1. for P. Similarly,
the standard deviations are the square root of their expec-
tations according to Theorem 1. For each distribution, we
also employ three different datasets with the same λ but dif-
ferent parameters, and the same parameters but different λ

just like the above simulation. The results perfectly follow
our theorems, and the datasets of all kinds of distributions
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(a)

(b)

FIG. 4. Statistical results of three datasets with different parameters of
NBD models based on specific M/G/∞ employing uniform distribution for
service. (a) Scale varying with time. (b) Scale statistical distribution and
comparison.

in purple squares have a twice larger stationary value and
fluctuate more extensively than those in red circles, while the
dataset in red circles have a twice larger stationary value and
fluctuate more extensively than those in green triangles. That
is to say, the stationary value and dispersion degree are indeed
decided by λ and corresponding distribution parameters.

Moreover, diagrams of scale distribution are shown in
Figs. 4(b), 5(b), and 6(b). The frequencies of all possible

(a)

(b)

FIG. 5. Statistical results of three datasets with different parameters of NBD
models based on specific M/G/∞ employing log-normal distribution for
service. (a) Scale varying with time. (b) Scale statistical distribution and
comparison.

(a)

(b)

FIG. 6. Statistical results of three datasets with different parameters of NBD
models based on specific M/G/∞ employing Pareto distribution for service.
(a) Scale varying with time. (b) Scale statistical distribution and comparison.

scales for three M/G/∞ models during the time of 104 are
regarded as their scale probabilities based on the law of large
number.

As we prove above in Theorem 3, the scale of the NBD
model based on M/G/∞ should follow a special Poisson
distribution with parameters λ

∫ ∞
0 [1 − G(x)]dx, which means

that the parameters are different from three datasets. Specif-

ically, for R, the parameter is 1
2λ(a + b), for L, it is λeμ+ σ2

2 ,
and for P, it is λαβ

β−1 . We can see that the parameters are also
the expectations which is a property of Poisson distribution.
Apparently, all figures display that the dataset follows Poisson
distributions. For R, the medium values also as expectations
are 100 for green triangles, 200 for red circles, and 300 for
purple square, which are products of λ and 1

2 (a + b). For L

and P, the results are the same, but the product of λ and eμ+ σ2
2 ,

as well as λ and αβ

β−1 . Besides, with the rise of values of param-
eters, the curves become wider, indicating that the variances
get larger which again follows Theorem 4. We also compare
the scale distributions of three datasets with totally theoretical
Poisson distribution to demonstrate the correctness of our the-
ory. The parameters λp of theoretical Poisson distributions are
100, 200, and 400 corresponding to the datasets of all models
and are shown by blue dots in Figs. 4(b), 5(b), and 6(b).

TABLE II. The statistical results of scale distributions of NBD with different
λ and 1

2 (a + b).

λ 1
2 (a + b)

Properties 2 × 50 2* × 100 4 × 100

Expectation 99.36 200.64 398.71
Standard deviation 9.92 14.81 20.80
Correlation coefficient 99.29% 97.51% 97.42%
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TABLE III. The statistical results of scale distributions of NBD with different

λ and eμ+ σ2
2 .

λeμ+ σ2
2

Properties 2 × 50 2 × 100 4 × 100

Expectation 98.50 200.98 398.48
Standard deviation 9.66 14.76 19.25
Correlation coefficient 97.73% 96.77% 98.09%

We then calculate the correlation coefficient of our
datasets with the theoretical Poisson distributions. For R, the
results are 99.29%, 97.51%, and 97.42%, for L, they are
97.73%, 96.77%, and 98.09%, while for P, they are 95.88%,
98.50%, and 97.44%. All are very close to the theoretical val-
ues, that is to say, all three models based on the M/G/∞
system follow the Poisson distribution.

All the results are listed in Tables II–IV. From all results,
we can apparently see that the scale of NBD based on the
M/G/∞ system stays stationary by time and finally fol-
lows a homogeneous Poisson distribution. It is in line with
the M/M/∞ system, which is only a specific kind of the
M/G/∞ system. Technically, the scale distribution kind is
independent of the distribution type of death, as long as its
expectation exists.

B. Simulation of population network

In this subsection, from the perspective of real worlds,
we utilize the scale of our NBD model to simulate the popula-
tions of three different countries. As we know, the population
network can be regarded as NBD, since it has a stationary
birth rate as well as an expected average age for every individ-
ual. Thus, once we have the datasets of birth rate and average
age, we can employ NBD based on M/M/∞ to simulate the
population. To get rid of other influencing factors like wars
and diseases, we select three developed countries, the Slovak
Republic, Poland, and Japan, from the database of the world
bank.

In the database of the world bank, we can obtain the
population from 1960 to 2015, total 55 years of these three
countries22 to be simulated, which is displayed in Fig. 7 (red
circles). Also, the crude birth rates per 1000 people23 along
with life expectancy24 for these 55 years are referred to as the
parameters for our simulation. As we know, the formula for
the crude birth rates per 1000 people is denoted as

CBR = λ

p
1000, (45)

TABLE IV. The statistical results of scale distributions of NBD with different
λ and αβ

β−1 .

λ
αβ

β−1

Properties 2 × 50 2 × 100 4 × 100

Expectation 97.37 202.10 399.28
Standard deviation 9.99 13.57 22.00
Correlation coefficient 95.88% 98.50% 97.44%
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FIG. 7. NBD models based on M/M/∞ system to simulate the populations
of three developed countries the Slovak Republic, Poland, and Japan. (a) Sim-
ulation for the Slovak Republic. (b) Simulation for Poland. (c) Simulation for
Japan.

where p is the population for the specific year. Then, we can
obtain the birth rate λ for each year and calculate the average
rate for the whole 55 years. Similarly, we can get the average
age as the called staying time by calculating the life expectan-
cies for 55 years. The results of parameters for the Slovak
Republic, Poland, and Japan are shown in Table V.

After the parameters are obtained, we consider the fact
that during the 55 years, these three countries are stationar-
ily developed and regard the result of birth and death rate
as the population according to our theory. Then, we employ
the proposed NBD based on the M/M/∞ system with the
parameters in Table V. These NBD are simulated for 500
years, and in which, 55 years from ascending to stationarity
are selected to simulate the years from 1960 to 2015. The

TABLE V. The parameters of average birth rate λ and average age μ−1 for
three developed countries.

Countries

Parameters Slovak Poland Japan

λ 7.56 × 104 5.25 × 105 1.44 × 106

μ−1 71.93 71.87 77.34
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TABLE VI. The comparison between theoretical expectation and real
average stationary population.

Results

Countries Expectation Populationa Errorb

Slovak 5.44 × 106 5.38 × 106 1.12%
Poland 3.77 × 107 3.83 × 107 1.57%
Japan 1.11 × 108 1.27 × 108 12.60%

aThe population here denotes the average population from 1995 to 2015
considered as the stationary value.
aError here means the relative error.

results are displayed and compared with a real dataset in Fig. 7
(blue triangles).

Equation (44) is employed to get the similarity of our
simulated dataset and real dataset. The results are, respec-
tively, 96, 17%, 94.48%, and 88.44% for the Slovak Republic,
Poland, and Japan, which indicate that our proposed models
are well served to simulate the population. With the rise of λ

and μ−1 of three countries, the variance also grows, according
to Theorem 2, resulting in higher instability and lower fitness.

Besides, we can also use the parameters to predict the
expectation of the stationary population in the application of
Theorem 2. To show the accuracy of prediction, we first col-
lect the populations from 1995 to 2015 (the populations of
three countries stay stationary during this time), 21 years in
total and calculate their average as the stationary value. Then,
by applying Theorem 2, we can obtain the expectation of the
populations as the prediction. Finally, the relative error is used
to confirm the accuracy of prediction.

The results are shown in Table VI, and the errors of three
countries are, respectively, 1.12%, 1.57%, and 12.60%. Obvi-
ously, the lower value of λ and μ−1 indicates a lower variance
and better prediction, like the Slovak Republic and Poland,
and they are all precise with the error near 1%. But with a
larger population like Japan, the variance increases radically,
which makes the prediction less accurate. Above all, our the-
oretical expectation can predict the real stationary population
within a certain range of error.

From this simulation, we can conclude that our pro-
posed model can also be applied to the population of those
developed countries already becoming stationary, and their
populations are regarded as the scales of our models essen-
tially. And the expectation can be used to predict the stationary
population, especially for those small countries with a low
population.

IV. CONCLUSION AND OUTLOOK

The network modeling and its topology property are a
highlight research target for network science. In this paper, we
introduce the birth and death process to the network modeling
and achieve the evolving network described by queueing sys-
tems, which is more suited for simulating practical networks
with increasing and decreasing individuals than the previous
models. More importantly, we primarily define the scale to be
a topology property, as it will be stationary as time goes by.

Utilizing the probability method inspired by the existing stud-
ies, not only do we prove the stationarity of the NBD scale, but
its distribution is also confirmed as the Poisson distribution.
Besides, we discuss the different types of death mechanisms
to fit various networks and conclude that they are indepen-
dent of the final distribution type of scale. From the simulation
results, we learn that the NBD model is in line with the the-
oretical conclusion and can also be extended to simulate and
predict the real population varying with time.

However, there are other situations for networks and may
only be considered as the M/M/∞ system or M/G/∞ sys-
tem. For example, when the capacity of a network is limited,
the system capacity cannot be considered as infinity, the birth
rate may also be irregular indicating the Poisson process is
dysfunctional, etc. For these situations, the scale distribution
is more likely different from Poisson distribution. Besides,
other factors can also be considered in the modeling of NBD
and not only the birth and death. And from the practical per-
spective, how to apply our model to more precisely simulated
population and other stationary network is still worth explor-
ing. All these issues require further work and will be our
research goal for the next stage.
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