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Evolving Network Modeling Driven by the Degree
Increase and Decrease Mechanism

Yuhan Li , Minyu Feng , Member, IEEE, and Jürgen Kurths

Abstract—Ever since the Barabási–Albert (BA) scale-free
network has been proposed, network modeling has been studied
intensively in light of the network growth and the preferential
attachment (PA). However, numerous real systems are featured
with a dynamic evolution including network reduction in addition
to network growth. In this article, we propose a novel mecha-
nism for evolving networks from the perspective of vertex degree.
We construct a queueing system to describe the increase and
decrease of vertex degree, which drives the network evolution.
In our mechanism, the degree increase rate is regarded as a
function positively correlated to the degree of a vertex, ensuring
the PA in a new way. Degree distributions are investigated under
two expressions of the degree increase rate, one of which mani-
fests a “long tail,” and another one varies with different values
of parameters. In simulations, we compare our theoretical dis-
tributions with simulation results and also apply them to real
networks, which presents the validity and applicability of our
model.

Index Terms—Degree distribution, evolving network, network
modeling, queueing system

I. INTRODUCTION

AGREAT number of real-life systems have a structure
composed of links and elements changing over time, e.g.,

the Internet, biological organisms, and populations. Complex
networks have been playing a significant role in describing
real complex systems, revealing the essential properties of
these systems. As more and more dynamic networks emerge,
modeling of evolving networks and analyses for their topo-
logical properties are crucial, which lay the basis for studying
network dynamics.

Pioneering studies have given important insights into evolv-
ing network models and analyses for topological properties.
There are some dynamic network models, e.g., temporal
networks where vertices are not constantly connected, adaptive
networks where vertices break their connections to neighbors
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autonomously according to epidemic spreading, and some
evolving networks considering node addition and deletion.
However, evolving network modeling is still worth studying to
construct a more realistic network and also analyze its critical
properties. Temporal network models and adaptive network
models are not available to describe those networks includ-
ing the growth and decrease of vertices, and current evolving
network models which consider the growth and decrease of
vertices are not in favor of investigating the important topolog-
ical property, the degree distribution. To address these issues,
in this article, we construct evolving network driven by the
variance of degree, endowed with dynamics and randomness
based on stochastic process and queueing theory. The real-
ization of preferential attachment (PA) is not expressed as a
probability in the Barabási–Albert (BA) model, instead, we
propose a degree increase and decrease mechanism, where the
increase rate is proportional to the present degree. The main
contributions of this article are as follows.

1) We establish a novel evolving network model with
node growth and deletion driven by the increase and
decrease of degrees. Our proposed network model
provides a theoretical framework for describing self-
evolutionary behaviors of complex systems featured with
network structures in real life. Based on this model, we
can analyze real-world networks’ properties and better
understand their evolution patterns.

2) Our proposed network model provides a new perspective
on calculating degree distributions of evolving networks.
As a key topological property, degree distributions have
been difficult to obtain in a form of analytical solu-
tions, in particular, for those evolving networks with the
growth and deletion of nodes. We adjust the traditional
PA mechanism by regarding that the degree increase
rate of a node is proportional to its degree. To this
end, it is easier to obtain specific expressions for degree
distributions of evolving networks.

3) Based on our model, we produce two new probability
distributions that can describe part of real-world evolv-
ing networks in different fields well. There are a great
majority of networks in real life whose degree distribu-
tions do not follow power-law distributions, while our
theoretically obtained distributions can better fit these
real-world networks compared to power-law distribu-
tions according to our simulations.

The organization of this article is as follows. In Section II,
we review related works about evolving network models and
methods of analyzing topological properties. In Section III,
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we display our evolving network model and perform analyses
for degree distributions of the network. In Section IV, simula-
tions are carried out to demonstrate the validity of our models
and apply our models to real-world networks. Conclusions and
future work are presented in Section V.

II. RELATED WORK

Watts and Strogatz first proposed small-world networks [1].
Then, Barabási and Albert established the scale-free network
model (BA model) [2], showing that the growth process and
PA account for the Pareto principle. The two models caused a
breakthrough, and a great variety of network models emerge.
There are a number of networks changing with time in real
life nowadays, and studies on dynamic network models gained
more attention. Evolving networks with adding or deleting a
vertex by probabilities were constructed [3]. As an extension,
an evolution mechanism of weighted edges was taken into
consideration [4]. Under continuous time, stochastic processes
were utilized for evolving network modeling. Poisson point
processes on space-time were applied to describe interac-
tions between two spaces [5], and birth-and-death processes
were used for studying a finite tree [6]. Later, a queueing
system was utilized to describe the growth and deletion of
vertices of evolving networks [7]. Based on this model, dif-
ferent deletion mechanisms were further investigated [8]. With
big data technology, a generative network framework was
established, which preserves both the structural and tempo-
ral features of the real data [9]. Dynamic network models
with newly added and deleted nodes, which preserve both
heterogeneous and dynamic features of a network were also
studied in the field of representation learning method [10]
and mobile ad hoc networks [11]. There are other dynamic
network models, e.g., temporal networks [12] and its exten-
sion [13], adaptive networks [14], and simplicial activity
driven networks (SAD) [15]. All of these models provide
appropriate frameworks for describing dynamic networks.

Network topological properties are also worth studying.
There are a lot of traditional methods of calculating degree
distributions of networks, e.g., mean-field method and master
equations, which are applied under some specific situations
to derive degree distributions of evolving networks [16], [17].
However, in this case of evolving networks with growth and
deletion of nodes, it is difficult to obtain an analytical solu-
tion due to the nonhomogeneity. To address this, a Markov
chain method based on stochastic process rules was established
and applied to two kinds of evolving networks [18]. Later, a
reversible Markov chain formulation was proposed to obtain
the stationary distribution of degrees [19]. By the Markov
chain, an exact formula of degree distributions was obtained in
a random evolving network [20]. Apart from degree distribu-
tions, many other topological properties were also studied by
researchers, e.g., betweeness [21], clustering coefficient [22],
and assortativity [23] of networks.

The evolving network model proposed in this article applies
stochastic processes which were used in some of the above
primer work, however, we do not use the Poisson process to
describe the growth and deletion of nodes as described in [7],

while we focus on the degree of a vertex and utilize stochastic
processes to describe the variance of degree. Additionally, dif-
ferent from the BA model, we use a nonhomogenous Poisson
process whose parameter is positively correlated to vertices’
degree varying with time. In this way, the PA rule is not
described by probabilities but is described from a new per-
spective by nonhomogeneous Poisson rates which are related
to the degree of vertices.

III. EVOLVING NETWORKS WITH GROWTH

AND REDUCTION

There are a lot of real-world networks with dynamic features
of shrinking as well as enlarging. For instance, in a popula-
tion contact network, people can come to or leave the network,
i.e., the migration of mobile population. Based on the network
framework, inflows of the population can be described as the
growth of nodes while outflows can be represented by the
deletion of nodes represents. To generalize this dynamic fea-
ture of real-world networks, we construct an evolving network
whose vertices and edges are deleted as well as added by our
mechanism.

A. Modeling of Evolving Network

For the growth mechanism of our evolving network, there
are newly coming vertices connecting to existing vertices, and
existing vertices with larger degrees have higher probabilities
to be connected to new vertices according to the PA. Different
from traditional models, the phenomenon of vertices connect-
ing to new vertices can be regarded as an increasing process
of vertex degrees. Therefore, we assume that the degree of old
vertices with larger degrees grows at a higher rate, while the
degree of existing vertices with smaller degree values grows
at a lower rate. Consequently, we realize the PA by a degree
increase rate positively correlated with the degree. On the other
hand, for the reduction mechanism, there are vertices discon-
necting from their neighbors and leaving the network, which
occurs randomly. This phenomenon can be regarded as the
decrease of degrees of an arbitrary vertex in the network. We
thus assume that existing vertices in the network lose degrees
randomly at a constant rate.

In respect of the increase process of a vertex’s degree, it
can also include new connections from old vertices in addi-
tion to connecting to newly coming vertices. The topological
properties can be different under the above situation. For the
degree increase process only considering connections from
new vertices, the network size grows as the degrees of vertices
increase. For the degree increase process only considering the
change of existing connections in the network, vertices auto-
matically generate new edges to connect existing vertices, and
the network will become denser while the network size would
not change. Besides, the change of network average degree is
different since the network size and the total degree increase
together in the former model, while the total degree increases
and the network size do not change in the latter one. The sit-
uation could be more complicated concerning both processes
since there is not only the input of vertices but also connec-
tions changing among vertices. For simplicity, we next only
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discuss the network evolution driven by the newly coming
vertices.

Based on the above assumptions, the growth and reduction
of the network can be regarded as the increase and decrease
of degrees for each vertex in the network. In that sense, the
increase and decrease of each vertex’s degree can be described
as a queueing system where vertices are customers, coming
and leaving the network, and the process of connecting to the
existing vertex is regarded as the service process. The four
important components of this queueing system are described
in the following.

Input Process: For an arbitrary vertex i in networks, new
vertices come and connect to it randomly, and the rate of new
vertices connecting to the vertex is proportional to its degree k.
Hence, the input flow of new vertices follows a Poisson pro-
cess with a parameter λ(k) which is positively correlated to
the degree of a vertex with k degrees. We mark this as

λ(k) ∼ k. (1)

Noticeably, the input rate λ(k) varies with the change of vertex
i degree. Moreover, suppose that the degree of vertex i is k(t)
at time t, we denote

P(k(t + �t) − k(t) = �k) = (λ(k)�t)k

k!
e−λ(k)�t (2)

as the probability that �k vertices come and connect to vertex
i during time �t with the input degree rate λ(k)

Service Process: Any vertex can be connected to as many
vertices as possible, indicating that the number of vertices
under service is without limit, numerically from 0 to +∞.
Therefore, the number of servers is infinite, and all servers
work in parallel. Besides, the decrease of vertices is random,
leading to a Poisson output flow. Hence, the service time under
each server is exponentially distributed with a parameter μ

which is the output rate, expressed as

P{T ≤ t} = 1 − e−μt (3)

where the variable T is the time that a vertex keeps connect-
ing to vertex i not being deleted, and P{T ≤ t} indicates the
probability that the staying time T in the network of a vertex
is smaller than t.

System Capacity: Since there is no limit for the number of
vertices in our proposed model, the vertex degree queueing
system capacity is +∞.

Queueing Discipline: Once a new vertex comes, it imme-
diately connects to the vertex i. Hence, the waiting time is
avoided and the system follows the rule that first comes, first
serves.

The above components of the vertex degree queueing
system present how vertices are connected by new vertices
and how vertices are deleted. According to the input process,
the larger the degree is, the higher the rate the vertex obtains
new degrees, which guarantees “the rich gets richer” rule. For
a better illustration, Fig. 1 presents a vertex degree queueing
system.

The increase and decrease of each vertex’s degree drive the
network evolution, resulting in the growth and reduction of

Fig. 1. Illustration of the degree queueing system. A snapshot during a
short time t is displayed (the degree queueing system evolves with time). The
purple larger circle indicates vertex i which is the objective of this system.
Blue circles indicate vertices that are connecting or are going to connect
to vertex i, and those with blue lines in the middle square indicate edges
connected during time t, while black lines indicate edges connected before
time t. Red dot lines and red circles indicate edges and vertices disconnected
to vertex i. Yellow wide lines indicate that there are edges connected to other
vertices in the network, not denoting specific edges.

the whole network. We also briefly demonstrate the evolution
of the network as follows.

Evolving Network Modeling:
Initial Network: There are a few m0 vertices in the initial

network, connecting to each other randomly.
Growth of Network: Based on the vertex degree queue-

ing system, each existing vertex follows the Poisson pro-
cess. Therefore, in light of the additive property of Poisson
processes, the input flow of vertices of the whole network fol-
lows a Poisson process with a parameter that is the sum of
Poisson parameters of all separate Poisson processes of the
degree of each vertex.

Reduction of Network: According to the vertex degree
queueing system, the degree decrease of each vertex follows
a Poisson process, which indicates that the edges between
vertices are randomly disconnected. For a vertex, if there is
no edge between it and other vertices, it is deleted from the
network.

Connection and Disconnection: For each vertex, new ver-
tices with an edge connect to it. Besides, since any existing
vertex (denoted as vertex i) with k degrees in the network is
connected to new vertices at the rate λ(k), which is in a pos-
itive correlation with the degree of vertex i, the connection
mechanism follows the PA that is

Pi = λi(k)
∑

i λi(k)
(4)

where Pi is the probability that vertex i is connected to a newly
coming vertex. For the disconnection, in terms of vertex i,
vertices leave it once the service process ends, which leads to
the disconnection of vertices in the network.

Termination: We set a time T large enough for the termi-
nation. Once time reaches T , the network ends up evolving.

The above description indicates a transition from the degree
increase and decrease mechanism to the network growth and
reduction. The degree increasing of vertices makes the network
grow by the newly coming vertices with edges, while the
degree decreasing of vertices makes the network reduce by the
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removal of vertices and edges. Therefore, the network can be
regarded as a multiserver multiqueue queueing system, where
each vertex is a server and degrees are customers. The input
flow of this network queueing system includes nonhomoge-
neous Poisson processes with rate λi of server i, and the output
flow with μ is a Poisson process which is the addition of the
output of all servers satisfying μ = ∑n

i μi, where μi is the
output rate of server i. The stationary condition of our network
queueing can be analyzed based on the method in [25]. The
network queueing system has a unique stationery if the num-
ber of customers {N(t), t ≥ 0} is positive recurrent, following
πdiag(λ1, λ2, . . . , λn)e < πGne, where π is the stationary
probability vector of H, Gn is the matrix of output rate in
[25, eq. (3)], and e is a column vector with all its elements
equal to 1.

From the perspective of the whole network, a newly coming
vertex may connect to more than one existing vertex, hence, it
is a one-to-many service process in terms of the whole network
queueing system. We suppose new vertices carry m edges and
connect to existing ones. Once the degree of an existing vertex
in the network increases by 1, it suggests that a new ver-
tex comes to the network and connects to existing vertices,
then the total degree of the whole network increases by 2 m.
Similarly, once the degree of an existing vertex decreases by 1,
it suggests that a vertex which is its neighbor disconnects from
the existing one, leading to the total degree of the network
decreasing by 2. The total degree of the whole network can
be taken as a stochastic process denoted by {D(t), t ≥ 0}. Since
the degree of a vertex i increases at the rate λi, the increase
process of the total degree is a compound nonhomogenous
Poisson flow with the parameter 2

∑
i λim according to the

Poisson additive property. In the same way, the decrease pro-
cess of the total degree follows a Poisson process with the
parameter 2μ.

B. Analyses for Degree Distribution

In this section, we perform analyses for the degree distri-
bution of the proposed evolving network.

According to the model above, the degree increase rate λ(k)
of a vertex with k degrees is not fixed with time-varying,
positively correlated with the degree of the vertex, which is
denoted by λ(k) ∼ k. We hereby discuss two exact expressions
for λ(k): λ(k) = k and λ(k) = ln(1 + k). The two expressions
for λ are both in a positive correlation with vertex degrees,
and λ(k) = k is the simplest expression to describe the rich
gets richer rule for the increase of degree. λ(k) = ln(1 + k)
also ensures that vertices with larger degrees obtain degrees at
a higher rate, which though grows more slowly when k gets
larger. Before deducing the degree distribution in these two
situations, some assumptions are introduced.

We analyze the degree of an arbitrary vertex i in the
network, then the degree distribution of vertex i we deduced is
the degree distribution of the network. The degrees of a vertex
i change with time, and the degree value can be taken as a
stochastic process, denoted by {K(t), t ≥ 0}. Furthermore, we
assume that the future state of the degree value K(t + �t),
given the past states and the present state K(t), is independent

Fig. 2. Illustration of the state transition of a vertex (denoted by i)’s degree:
as we can see above the arrow f (k)(k = 1, 2, . . .) indicates the degree increase
rate relevant to the degree k, and beneath the arrow, kμ indicates the degree
decrease rate. The figures in circles indicate the degree value.

of the past states and depends only on the present state, which
is intuitive according to the increase and decrease mechanism
for the vertex degree. Thus, the degrees of an arbitrary vertex
i varying with time denoted by {K(t), t ≥ 0} is known as a
Markov chain whose state space is � = {1, 2, . . .}, and we let

Pk(t) = P{K(t) = k}, k ∈ � (5)

which indicates the probability that the degree is k at time t.
Given t → ∞, if the limited distribution exists, then define it
as the stationary distribution

Pk = lim
t→∞ Pk(t), k ∈ � (6)

that is also the degree distribution of the network if the process
of the degree will be stationary when t → ∞.

Since the vertex degrees increase and decrease, the birth and
death process is introduced to deduce expressions for degree
distributions. An illustration of the state transition of the birth
and death process for the vertex degree is shown in Fig. 2.
Since the time of each new vertex keeps connecting following
an exponential distribution with μ and there are k vertices
connected to a vertex at the same time. Hence, kμ indicates
the total degree decrease rate. Next, we analyze two situations
that are λ(k) = k and λ(k) = ln(1 + k), respectively.

1) Degree Distribution With λ(k) = k: We first consider
the form λ(k) = k. Primarily, we give the condition of the
existence of the stationary distribution.

Lemma 1: Suppose that the degree increase rate λ(k) = k,
the decrease rate is μ (μ>0), then the stationary degree
distribution exists if μ > 1.

Proof: As the queueing system is stationary, according to
the Kolmogorov backward equation, for k = 1, 2, . . ., we have

(k − 1)Pk−1 − kμPk = 0. (7)

Processing (7), put Pk−1 and Pk on both sides of the equation
sign, and iterate each equation based on the former equation
in (7), we obtain Pk (k = 1, 2, . . .) expressed by P1

Pk = 1

kμk−1
P1. (8)

According to the sum of probabilities being 1, sum up the
probabilities of all the possible values of k, denoted by∑+∞

k=1 Pk = 1. In the light of (8), it becomes

P1

(

1 +
+∞∑

k=2

1

kμk−1

)

= 1. (9)

Let S(μ) = ∑+∞
k=2 (1/kμk−1), and denote by uk the term k in

the series S(μ). If S(μ) converges, then the expression for Pk

exists according to (8) and (9).
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For S(μ), if limk→+∞ (uk/uk−1) < 1, S(μ) converges. We
have

lim
k→+∞

uk

uk−1
= lim

k→+∞
1

kμk−1
· (k − 1)μk−2 = lim

k→+∞
k − 1

k
· 1

μ
.

(10)

Since limk→+∞ (k − 1/k) = 1, we obtain

lim
k→+∞

uk

uk−1
= 1

μ
. (11)

According to (11), if μ>1, uk is larger than uk−1, S(μ) is
divergent. If μ = 1, the general term is

uk = 1

k
(12)

and S(μ) = ∑+∞
k=2 (1/k) is a harmonic series which is diver-

gent leading to no solution to P1 in light of (9). If μ > 1,
S(μ) converges, further the expression for the stationary degree
distribution Pk exists according to (9).

Therefore, the stationary degree distribution Pk exists if
μ > 1. The result follows.

Lemma 1 demonstrates the condition for the existence of
the stationary distribution for the vertex degree. We know that
if λ(k) = k, μ must be larger than 1 for the theoretical solu-
tion for stationary degree distribution. Under the condition that
μ > 1, we next deduce the expression for Pk. Before deducing
the expression for Pk, we introduce Lemma 2 for preparations.

Lemma 2: Giving the infinite series S(x) = ∑+∞
k=1 (xk−1/k),

and x < 1, S(x) converges and

S(x) = − ln(1 − x)

x
. (13)

Proof: S(x) can be processed to

S(x) = 1

x

+∞∑

k=1

xk

k
(14)

where x is regarded as a constant, not a variable. Let∑+∞
k=1 (xk/k) be S1(x), taking the derivative of S1(x) with

respect to k, marked as S′
1(x), based on the algorithm of power

series, we yield

S′
1(x) =

+∞∑

k=1

xk−1 = 1

1 − x
(15)

which utilizes the summation formula of geometric series.
Then, integrating S′

1(x), we obtain

S1(x) =
∫ x

0

1

1 − x
dx = −ln(1 − x). (16)

According to (31) and 16, S(x) is

S(x) = − ln(1 − x)

x
. (17)

The result follows.
Based on Lemmas 1 and 2, the exact expression for the

degree stationary distribution Pk is presented below.
Theorem 1: For an arbitrary vertex i in the proposed

network, the degree increase rate λ(k) of it at time t is equal
to the degree k(t) of vertex i, and the degree decrease rate is

μ where μ < 1. Then the stationary degree distribution Pk of
the vertex i exists and is denoted as

Pk = − 1

kμk
ln−1

(

1 − 1

μ

)

. (18)

Proof: Referring to (9) in Lemma 1, we obtain P1
expressed as

P1 = 1
(

1 + ∑+∞
k=2

1
kμk−1

) . (19)

According to Lemma 2, the denominator
∑+∞

k=2 (1/kμk−1) of
the right term of (19) can be written as

+∞∑

k=2

1

kμk−1
=

+∞∑

k=1

xk−1

k
− u1 =

+∞∑

k=1

xk−1

k
− 1 (20)

where u1 is the first term of the series S(μ) in Lemma 1.
Taking (20) into (19), then

P1 = 1
∑+∞

k=1
1

kμk−1

. (21)

Applying Lemma 2, we get
∑+∞

k=1 (1/kμk−1) =
−(1/[μln(1 − [1/μ])]). Thus

P1 = − 1

μln
(

1 − 1
μ

) . (22)

Then, we obtained Pk by iterations according to (8)

Pk = − 1

kμk
ln−1

(

1 − 1

μ

)

. (23)

The result follows.
Theorem 2: In our proposed model, assume that the degree

increase rate of an arbitrary vertex i is equal to its degree,
denoted as λ(k) = k of vertex i, and the degree decrease rate
is μ, where μ < 1. Then the expectation of the degree of
vertex i is

E[k] = − 1

(μ − 1)ln
(

1 − 1
μ

) . (24)

2) Degree Distribution With λ(k) = ln(1+k): We consider
an alternative expression for the degree increase rate λ(k) =
ln(k + 1). We also first analyze the existence of the stationary
distribution for K(t) with f (k) = ln(k + 1) in Lemma 3.

Lemma 3: Suppose that the degree increase rate λ(k) is
equal to ln(k + 1), and the decrease rate is μ (μ>0). Then
the stationary degree distribution exists.

Proof: As the queueing system is stationary, according to
the Kolmogorov backward equation, we have

ln(1 + k)Pk−1 − kμPk = 0. (25)

Put Pk−1 and Pk on both sides of the equation sign, iterate each
(25) based on the former equation, we obtain Pk (k = 1, 2, . . .)

expressed by P1

Pk =
∏k−1

j=1 ln(1 + j)

k!μk−1
P1. (26)
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According to the sum of probabilities being 1, sum up the
probabilities of all the possible values of k, denoted by∑+∞

k=1 Pk = 1, based on (26), the sum of probabilities is

P1

(

1 +
+∞∑

k=2

∏k−1
j=1 ln(1 + j)

k!μk−1

)

= 1. (27)

Let
∑+∞

k=2 ([
∏k−1

j=1 ln(1 + k)]/k!μk−1) be the infinite series
S(μ), and denote by uk the general term of the series S(μ). If
limk→+∞ (uk/uk−1) < 1, S(μ) converges, and the expression
for the degree distribution Pk exists.

Test the convergence of S(μ) via uk divided by uk−1

lim
k→+∞

uk

uk−1
= lim

k→+∞

∏k
j=1 ln(1 + j)

k!μk−1
· (k − 1)!μk−2

∏k−1
j=1 ln(1 + j)

= lim
k→+∞

ln(1 + k)

k
· 1

μ
. (28)

From

lim
k→+∞

ln(1 + k)

k
= 0 (29)

it follows:

lim
k→+∞

uk

uk−1
= 0. (30)

S(μ) converges according to (30), and the stationary degree
distribution exists.

The result follows.
Though the expression for the degree stationary distribution

Pk can be obtained if S(μ) in Lemma 3 is known according to
(27), the theoretical solution for S(μ) is difficult to attained.
Therefore, we let the series S(μ) be

S(μ) =
+∞∑

k=2

∏k−1
j=1 ln(1 + j)

k!μk−1
. (31)

We calculate S(μ) by numerical simulations. The sum should
be calculated from k = 2 to +∞ theoretically. However, in
simulations, we set k large enough, meanwhile the largest
value of k should avoid the underflow of items in S(μ). Then,
set the value for μ, by computer calculation we can obtain
S(μ) numerically, and further get P1 according to

P1 = 1

1 + S(μ)
. (32)

Once obtaining P1, we can get Pk (k = 1, 2, . . .) by iterations
based on (26). The plots of the degree distribution with λ(k) =
ln(1 + k) will be demonstrated in the simulation.

Above all, we construct the evolving network with growth
and decrease of vertices and edges, and perform analyses for
the degree distribution via the birth and death process. More
properties of the proposed network are further presented in the
next section.

IV. SIMULATION

Hereby, we display simulation results to verify and extend
our theorems of the proposed model, and also apply our
theorems to fitting real data, showing the feasibility of our
model.

A. Modeling of Network

Primarily, we describe the construction of our network in
simulations based on our model. In terms of time passing, the
time is continuous, and the interval of events that new ver-
tices come and existing vertices are deleted is generated by
exponential distributions. For the connection, each new vertex
carried with m edges comes and connects to existing vertices
in networks. Allocate new edges of newly coming vertices
connecting to existing vertices according to the form of the
degree increase rate λ(k). For the first form λ(k) = k, we
use the (ki/

∑j k) as the probability for vertex i connected
to a new vertex. For the second form λ(k) = ln(1 + k),
([ln(1 + ki)]/[

∑j ln(1 + kj)]) is taken as the probability for
vertex i connected to a new vertex. We utilize networkx pack-
ages in Python to carry out the simulation. The procedures of
network construction are as follows.

1) Give the termination time T , the initial number of ver-
tices m0, and the edge number m of a newly coming
vertex carrying.

2) Generate an interval �tλ(k) following exponential dis-
tribution for the event of vertex increase and another
interval �tμ for the event of edge decrease. If �tλ(k) <

�tμ, generate a random number in the range [0, 1] by
rand() multiplied by the sum of degree, and find the
corresponding vertex whose degree interval includes the
generated number, otherwise, randomly delete an edge
in the network.

3) Update the time left.
4) Return 2) until achieving the termination T .
Based on the above algorithm, we construct networks

demonstrated in Fig. 3. Fig. 3(a)–(c) shows network snapshots
with λ(k) = k, given μ = 1.01, 1.21, 1.41, respectively, and
Fig. 3(d)–(f) presents network snapshots with λ(k) = ln(1+k),
given μ = 0.005, 0.01, 0.05. The initial number of ver-
tices is set as m0 = 10, and the edges of new vertices are
m = 3 for both forms of λ(k). T is set as 3.5 for networks in
Fig. 3(a)–(c) and 6.5 for Fig. 3(d)–(f), which is a reasonable
length of time for network evolving in terms of the decrease
rate μ. The size and color of a vertex reflect its degree value.
In terms of size, the bigger the size of the circle is, the larger
degree it has. In terms of color, yellow indicates a large degree,
while the other purple indicates a small degree, and blue and
green indicate a medium degree. The measure of color pre-
senting the degree is only within the same network. As shown
in Fig. 3, networks in the subfigures are all heterogenous, only
a few vertices have a large degree value and the majority
of vertices have small degree values. For both situations for
the increase rate λ(k) [λ(k) = k and λ(k) = ln(1 + k)], the
network is getting sparser with the decrease rate μ increas-
ing according to the snapshots of networks at the same
time.

B. Degree Distribution of Limited Resources Network

In this section, we focus on the degree distributions accord-
ing to our vertex degree queueing system.

The degree distributions based on our model are dis-
played under different situations given different parameters.
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Fig. 3. Illustration of networks under two degree increase rates and different decrease rates: The initial network is a scale-free network with 10 vertices.
New vertices come with two edges connected to existing vertices. (a)–(c), respectively, show snapshots of networks with μ = 1.01, 1.21, and 1.41 under
the first situation that λ(k) = k, while (d)–(f), respectively, present snapshots of networks with μ = 0.005, 0.01, and 0.05 under the second situation that
λ(k) = ln(1 + k). The size and the color of nodes symbolize their degree value, where big and yellow circles indicate a large degree while small and purple
circles indicate a small degree value. Vertices with a medium degree value are middle-size and dark blue.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Degree distribution with different decrease rates μ and λ(k) = k: (a)–(f) are, respectively, set with μ = 1.5, 2.0, 3.5, 3.0, 4.0, and 5.0. Time is
set large enough for the distribution to be stationary. Red lines indicate theoretical distributions, and the blue circle plots indicate distributions obtained by
simulations. Distributions are all heterogeneous, featured with long tail.

For λ(k) = k, we let T be 105 large enough for results to
satisfy the law of large numbers, and set the degree decrease
rate μ = 1.5, 2.0, 2.5, 3.0, 4.0, and 5.0. We record the degree
value varying with time, calculate the frequency of each degree

value appearing, then, respectively, demonstrate the theoretical
degree distributions and simulation degree distribution in
Fig. 4(a)–(f). As we can see in Fig. 4, simulation distribution
plots are close to theoretical distributions, which verifies the
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Degree distribution with different decrease rates μ and λ(k) = ln(1 + k): (a)–(f) are, respectively, set with μ = 0.075, 0.15, 0.75, 1.5, 2.0, and 2.5.
Red lines indicate theoretical distributions by numerical calculation, and the blue triangle plots indicate distributions obtained by simulations. Distributions
with μ = 0.075 and 0.15 different from the rest distributions are skew distributions, while others are heterogeneously featured with long tail.

validity of Theorem 1. Besides, the degree distributions are all
heterogenous with a long tail. This heterogenous distribution
is due to our mechanism for the increase rate λ(k) = k, which
ensures that the larger degree a vertex has, the quicker its
degree grows. Additionally, according to the probabilities on
the y-axis from Fig. 4(a)–(f), the probability of a small degree
gets higher as μ increases, which suggests that the degree
distribution becomes more heterogenous with μ rising. The
reason for this is that we can only record degree values within
a limited time though it is quite long. The large degree is
more difficult to accumulate when the decrease rate μ becomes
larger, leading to the probability of small degree values being
higher.

For λ(k) = ln(1 + k), we set μ = 0.075, 0.15, 0.75, 1.5,
2.0, and 2.5 and T = 105. We also calculate the frequency
of each degree value as their probability according to the law
of large numbers. As shown in Fig. 5(a)–(f), the simulation
results are close to the theoretical results, presenting the val-
idation of our theoretical distributions. Besides, the degree
distributions with λ(k) = ln(1+k) are different from that with
λ(k) = k. As illustrated in Fig. 5, the degree distributions with
μ = 0.075 and 0.15 are not similar to “long-tail” distributions
but skew distributions with left skewness for μ = 0.075 and
right skewness for μ = 0.15. This indicates that most vertices
have a medium degree, and a few vertices have a small or
large degree. However, in Fig. 5(c)–(f), the degree distribu-
tions are heterogenous featured with a long tail which obeys
the Pareto principle. The reason for that is the expression for
the increase rate λ(k) = ln(1 + k) massively reduces the rich
gets richer effect compared to λ(k) = k. Additionally, the prob-
ability of a small degree also gets higher as μ increases, which

(a) (b)

Fig. 6. Local map of the degree distributions under λ(k) = ln(1 + k) with
different values of μ. We magnify the local section of degree distributions
with the form λ = ln(1+k) to observe the phase transition in the distribution.
(a) Value of μ is set as 0.364, 0.366, 0.368, and 0.37 marked by squares with
different colors. The threshold of μ for P1 = P2 is between 0.366 and 0.368.
(b) Value of μ is set as 0.345, 0.346, 0.347, and 0.348 marked by triangles
with different colors, and the threshold of μ for P2 = P3 is between 0.346
and 0.347.

indicates that degree distribution is more heterogenous as
μ increases.

For Fig. 5, there is an obvious phase change in the degree
distributions. We further investigate this phenomenon and
analyze the critical values. By simulation, we find that there
are two thresholds for the degree decrease rate μs which
essentially change the distribution plots. In Fig. 6(a), given
μ = 0.368, the probability of k = 2 denoted by P2 is larger
than P3, while P2 < P3 when μ < 0.366. Therefore, there
is a threshold of μ between 0.366 and 0.368 for P1 = P2.
With μ decreasing, in Fig. 6(b), P2 is larger than P1 when
μ > 0.347, while P1 < P2 when μ < 0.346. The threshold
of μ for P1 = P2 is between 0.346 and 0.347. The reason
for the phase transition is theoretically related to (31), where
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(a) (b)

Fig. 7. Degree distributions as a function of the degree decrease rate μ under
two forms of the degree increase rate λ(k): Degree distributions we present in
the logarithmic coordinate are theoretical distributions we obtained according
to our model. Distributions with different values of μ are marked by different
colors, and the power-law distribution is colored gray. According to the distri-
bution plot in logarithmic coordinates, the theoretical degree distributions in
our model are not power-law distributions. (a) λ(k) = k. (b) λ(k) = ln(k +1).

μ affects the value of S(μ), further affecting Pk. Thus, there
are thresholds of μ for P1 = P2 and P2 = P3 which totally
change the shape of the distribution plots.

For a better illustration, we present theoretical distributions
under two forms of λ(k) and with different values of μ as well
as a power-law distribution with the expression 2m2k−3 for
comparison under a logarithm coordinate in Fig. 7. In Fig. 7,
the distributions of both situations are not typical power-law
distributions though they have a long-tail character similar to
power-law distributions under ordinary coordinates. In detail,
the red curve in Fig. 7(b) representing the distribution with
μ = 0.4 under λ(k) = ln(1 + k) is not monotonically decreas-
ing, which corresponds to a skew distribution like distributions
in Fig. 5(a) and (b). In Fig. 7, in the λ(k) = k cases, our
degree distribution shows that more vertices have a relatively
small degree, while fewer vertices have a quite small or quite
large degree in comparison with the power-law distribution,
while distributions with λ(k) = ln(1 + k) manifest different
forms (a skew distribution or a long-tail distribution) due to
the value of μ.

To measure the similarity of theoretical distributions and
simulation results, we also calculate the Pearson correlation
coefficient ρ, the Kullback–Leiber divergence denoted as KL,
and the Jensen–Shannon divergence [24] denoted as JS of
them. ρ is calculated by

ρ = E
[(

Pai − P̄a
)(

Pbi − P̄b
)]

σPa

σPb (33)

where the range of ρ is [−1, 1].
The Kullback–Leibler divergence is an asymmetric measure

of the difference between two distributions, expressed as

KL(Pa||Pb) =
∑

Palog
Pa

Pb
(34)

where the divergence is in the range of (0,∞).
The Jensen–Shannon divergence is based on the KL diver-

gence but symmetrical, expressed as

JS(Pa||Pb) = 1

2
KL(Pa||Pb) + 1

2
KL(Pb||Pa) (35)

which ranges between 0 and 1.
The results of these three measures under the two situations

for λ(k) with different values of μ are illustrated in Table I.

(a) (b)

(c) (d)

Fig. 8. Comparison of the theoretical and real degree distributions of the
coauthorship network: Two situations of the increase rate λ(k) = k and
λ(k) = ln(1 + k) of our degree queueing system model are, respectively,
applied to the coauthorship in the field of network science. For each form
of λ(k), we use different colors to present the theoretical degree distribution
and the real degree distribution under the normal coordinate and the logarith-
mic coordinate, turquoise for λ(k) = k and magenta for λ(k) = ln(1 + k).
The MoncSid-N model is also applied to fit the real network for com-
parison, marked by the gray line. (a) λ(k) = k under the log COOR.
(b) λ(k) = k under the normal COOR. (c) λ(k) = ln(l + k) under the log
COOR. (d) λ(k) = ln(l + k) under the normal COOR.

TABLE I
SIMILARITY OF THEORETICAL DISTRIBUTIONS AND SIMULATION

DISTRIBUTIONS BASED ON THREE MEASURES

We see that the Pearson correlation coefficients of theoretical
and simulation distributions are all larger than 0.9 except for
one value under the parameter of λ(k) = k and μ = 1.5. The
largest value of KL divergence and JS divergence is, respec-
tively, 0.82 and 0.14. The small JS divergences in all situations
suggest that the theoretical distributions agree with simulation
distributions on the whole.

C. Simulations of Fitting Real Networks

In this section, we apply our model to fit real-
world networks from three different fields, a coauthorship
network [26], an email communication network [27], and
an autonomous system (AS) network [28]. For comparison,
we also apply one of the latest evolving network models,
MoncSid-N [29] to fit these networks. Application analysis is
performed by measuring the goodness of fitting via similarity
measurement.

1) Coauthorship Network: The distribution marked by blue
circles illustrated in Fig. 8 is the degree distribution of a
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(a) (b)

(c) (d)

Fig. 9. Comparison of the theoretical and real degree distributions of the
AS network: Two forms of the increase rate λ(k) = k and λ(k) = ln(1 + k)
of our degree queueing system model are, respectively, applied to the AS
network. For each form of λ(k), two different colors are selected to present
the theoretical degree distribution and the real degree distribution under the
normal coordinate and the logarithmic coordinate, turquoise for λ(k) = k and
magenta for λ(k) = ln(1 + k). The MoncSid-N model is also applied to fit
the real network for comparison, marked by the gray line. (a) λ(k) = k under
the log COOR. (b) λ(k) = k under the normal COOR. (c) λ(k) = ln(l + k)
under the log COOR. (d) λ(k) = ln(l + k) under the normal COOR.

coauthorship network. The practical network represents coau-
thorships in the area of network science with a total vertex
umber of 1461 and a total edge number of 2742, where nodes
represent authors and edges represent cooperation between
authors. The network is undirected and unweighted and does
not contain loops.

As illustrated in Fig. 8 marked by blue circles, the degree
distribution of the coauthorship network is heterogenous The
fraction is below 0.1 when k = 4, and it is very small and stays
steady when k > 7 featured with a long tail. However, the
degree distribution of the coauthorship network is not a typi-
cal power-law distribution, as we can see in Fig. 8(b) and (d).
The degree distribution manifests as a curve going down-
ward but not a straight line plot in the logarithmic coordinate.
Fig. 8(a) and (b) shows the fitting results of λ(k) = k where
we set the parameter μ = 1.28 for the situation of λ(k) = k,
and in Fig. 8(c) and (d), we set the parameter μ = 0.58 for
λ(k) = ln(1 + k). In both subfigures, most circles are around
the theoretical lines, suggesting that the theoretical distribu-
tion is in accordance with the practical degree distribution.
Under the logarithm coordinate in Fig. 8(b) and (d), blue cir-
cles are not around the theoretical line when k > 10. This
is because the fraction of vertices with a degree larger than
10 is the same in the practical network owing to a small vol-
ume of data. Nevertheless, our theoretical distributions of both
expressions for ln(1 + k) have a good fitting on the whole.

2) Email Communication Network: The practical degree
distribution of an email communication network is illustrated
in Fig. 10. This network represents coauthorships in the area
of network science with a total vertex umber of 1133 and a
total edge number of 5451, where nodes indicate users and
edges represent that at least one email was sent between two

(a) (b)

(c) (d)

Fig. 10. Comparison of the theoretical and real degree distributions of the
email communication network: Two situations of the increase rate λ(k) = k
and λ(k) = ln(1 + k) of our degree queueing system model are, respectively,
applied to the email communication at the University Rovira i Virgili. For
each form of λ(k), two different colors are selected to present the theoretical
degree distribution and the real degree distribution under the normal coor-
dinate and the logarithmic coordinate, turquoise for λ(k) = k and magenta
for λ(k) = ln(1 + k). The MoncSid-N model is also applied to fit the real
network for comparison, marked by the gray line. (a) λ(k) = k under the log
COOR. (b) λ(k) = k under the normal COOR. (c) λ(k) = ln(l + k) under the
log COOR. (d) λ(k) = ln(l + k) under the normal COOR.

users. The network is undirected and unweighted, as well as
excluding loops.

In Fig. 10(a) and (c), the practical distribution of the email
communication network is also heterogenous. The degree
distribution of this practical network is also not a power-
law distribution but a downward curve as we can see in the
logarithm coordinate shown in Fig. 10(b) and (d), yet it is
featured with a long tail shown in Fig. 10(a) and (c). We
set the parameter μ = 1.05 for the situation of λ(k) = k
presented in Fig. 10(a) and (b), and set the parameter μ = 0.40
for λ(k) = ln(1 + k) illustrated in Fig. 10(c) and (d). From
Fig. 10(a) and (c), we can see that the probability of k = 1
is 0.3 according to the theoretical distribution of λ(k) = k,
higher than the real degree distribution with a probability
P(k) = 0.2, however, they are close on the whole. Comparing
Fig. 10(a) and (c), the theoretical line with λ = k is closer
to real data circles than the line with λ = ln(1 + k), which
suggests that the theoretical distribution with λ(k) = ln(1+ k)
has better goodness of fitting than that with λ(k) = ln(1 + k)
from the normal coordinate. From the plots under the log-
arithm coordinate shown in Fig. 9(b), the theoretical line is
like a straight line with a small curvature, indicating that the
theoretical distribution is close to a power-law distribution.
The circle plot representing the practical degree distribution
has a larger curvature compared to the theoretical line, which
leads to the tail of the line does not agree with the circle plot.
The situation in Fig. 10(d) is different, the curvature of the
theoretical line is larger than that of the practical distribution.

To view the plots as a whole, two theoretical distributions
fit the real degree distribution well.
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TABLE II
RESULTS AND PARAMETERS OF DEGREE DISTRIBUTION FITTING OF THREE PRACTICAL NETWORKS

3) Autonomous System Traffic-Flow Network: The prac-
tical degree distribution of an AS traffic-flow network is
presented in Fig. 9 marked by circles. AS is subgraphs of
routers com3prising the Internet, where nodes represent routers
and edges are traffic flows between two routers. The whole
dataset contains 733 networks over 785 days from November
8th 1997 to January 2nd 2000, and AS networks include both
the addition and deletion of the nodes and edges over time.
Hereby, we choose a snapshot of the evolving As network.

As illustrated in Fig. 9, the degree distribution of the AS
network is also a long-tail distribution, where the fraction of
vertices with degree k = 1 is over 0.25, and the fractions of
k>5 are all below 0.05. We set μ = 1.04 for the theoretical
distribution with λ(k) = k, and μ = 0.44 for that with λ(k) =
ln(1 + k), respectively, demonstrated in Fig. 9(a) and (c)
in normal coordinates, Fig. 9(b) and (d) in logarithmic coordi-
nates. For λ(k) = k, most circles are around the theoretical line
under normal coordinates as illustrated in Fig. 9(a), suggest-
ing that the theoretical distribution with λ(k) = k fits the real
degree distribution well. While under the logarithm coordinate
in Fig. 9(b), the trend of tail circles does not correspond to
the theoretical line. This is because of the nonuniform scale of
axes of logarithm coordinates which magnifies the difference
between the real distribution and the theoretical one when k is
getting large. For λ(k) = ln(1 + k), under the normal coordi-
nate, most circles are also around the theoretical line except for
k = 2 whose theoretical probability is 0.25 approximately, less
than the practical fraction which is about 0.28. However, under
the logarithm coordinate, the tail of the theoretical line with
λ(k) = ln(1 + k) is too much below the blue circles Fig. 9(d),
which shows a poor fitting result. In general, there is superb
goodness of fit of theoretical distribution with λ(k) = k com-
pared to λ(k) = ln(1 + k) for the real degree distributions of
AS network.

We measure the goodness of fitting for practical degree dis-
tributions based on three measures introduced in Section IV-B,
as well as the values of parameter μ are displayed in Table II,
where the values of ρ are all larger than 0.90, and the JS
divergence is all less than or equal to 0.0354. For the KL
divergence, except for the value of the AS network with
λ(k) = ln(1 + k), the values of other fitting results are all less
than or equal to 0.1752. This shows good fitting results for
three real networks via applying our theoretical distributions.

For comparison, we also utilize other evolving network
models, MoncSid-N [29] to fit real networks by comparing
their degree distributions. The MoncSid-N model is marked by
gray lines in Figs. 8–9, where we can see that under the log-
arithm coordinate, the degree distributions of MoncSid-N are
power-law distributions, manifesting a straight line. In detail,

for the coauthorship network, the degree distributions of our
model λ(k) = k and λ(k) = ln(1 + k) are both closer to the
circle plot of the real distribution compared to the MoncSid-
N model, shown in Fig. 8. For better validation, in Table II,
the Person correlation of our theoretical distributions is larger
than that of the MoncSid-N model, while the KL and JS diver-
gence of our theoretical distribution are smaller compared to
that of the MoncSid-N model. A similar situation can be found
for the email communication network in Fig. 10. For the AS
network, our proposed model with λ(k) = k is more appro-
priate for describing its real degree distribution, compared to
the MoncSid model and our model with λ(k) = ln(1 + k),
presented in Fig. 9. Correspondingly, in Table II, in terms of
fitting the AS network, our model with λ(k) = k shows its
advantages according to the three metrics.

V. CONCLUSION AND OUTLOOK

In this article, we propose an evolving network from the
perspective of the vertex degree variation. We let the degree
increase rate in the degree queueing system be a function
positively correlated with the degree, which promises the PA
mechanism in many real-world networks. The degree distribu-
tion of our model is analyzed by a Markov process under two
situations for the degree increase rate λ(k) that are λ(k) = k
and λ(k) = ln(1 + k). The new distributions we obtained are
heterogenous and featured with a long tail, but not typical
power-law distributions as we see under the logarithm coor-
dinate. It can well describe degree distributions of some real
networks in different areas.

There are still some issues worth further investigating. There
are various other expressions for the degree increase rate
λ(k) as a function of the degree k while we only discuss
two specific situations. A general paradigm is expected to
be formed for analyses of degree distributions. Besides, our
network model can be hopefully applied to different scenarios
in various fields. Our evolving networks can be combined with
representation learning models, such as dynamic graph neural
networks (GNNs), and used to study the dynamic properties
of Peer-to-Peer (P2P) networks. We will use the proposed
evolving network model and mechanism to construct dynamic
P2P networks with node additions and departures for further
study. We will focus on these issues and applications in the
near future.
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