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In the era of big data, open data has become a critical factor in production. To establish a stable 
and long-term open data management mechanism, we investigate the evolution of cooperative 
behaviors in open data management based on networked evolutionary games, where complex 
networks are used to model the interaction structure between open data managers and game 
theory is employed to illustrate the social dilemmas faced by these managers. In addition, 
we account for the dynamic nature of social dilemmas in the interactions between managers, 
recognizing that the dilemmas they encounter are not static but rather evolve over time. To 
model this, we use different game models to represent various social dilemmas and propose social 
dilemma transitions to capture the evolving dilemmas faced between open data managers. In 
our simulations, we explore how payoff parameters and transition rates ifluence the emergence 
and sustainability of cooperation across different population structures, finding that both factors 
play a significant role in the evolution of cooperation. Furthermore, the cooperative evolution 
dynamics is analyzed on a square lattice network with periodic boundaries from a microscopic 
perspective. We also study the ifluence of different patterns of social dilemma transition on the 
evolution of cooperation. The findings presented in this paper may offer valuable insights for open 
data managers, helping them make informed decisions, and fostering the evolution of cooperation 
within open data management systems.

1. Introduction

With the rapid advancement of information technology, data has become a crucial resource for driving social progress and national 
development [1]. Open data, an emerging concept in data management, refers to data that is freely accessible, usable, and shareable by 
anyone. Typically released in structured formats that facilitate machine processing and analysis, open data promotes transparency, 
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sharing, and unrestricted access [2,3]. Its primary goal is to dismantle information silos, foster the dissemination and application 
of knowledge, and enhance transparency and public participation in governance, business, and society. The opening and proactive 
utilization of diverse data sources, including government and enterprise data, can unlock vast economic and social potential, providing 
significant impetus for the development of the digital economy, digital culture, and digital society [4].

Open data provides startups and developers with a wealth of resources that can drive innovation in new products and services. 
By analyzing open data, companies can identify market needs and develop more competitive solutions. Besides, open data enhances 
the transparency of governments and organizations, thereby increasing public trust in policy-making and decision-making processes. 
Providing access to detailed data on environmental, financial, and social issues, among others, enables the public to gain a deeper 
understanding of government operations [5]. As such, open data plays multiple roles in modern societies and carries significant 
social, economic, and political implications. Furthermore, open data has broad applications across various sectors, including trans
portation [6,7], government [8,9], and environmental management [10,11]. For instance, in traffic management and urban planning, 
analyzing traffic flow data allows city managers to optimize traffic signals and public transportation routes, improving the overall 
efficiency of urban systems. In environmental protection and monitoring, the release of data on water resources, meteorological con
ditions, and air quality indices empowers the public to understand environmental issues better and supports sustainable development 
initiatives.

Despite the numerous benfits of open data, its implementation still faces several challenges [12,13]. As the information age 
progresses, concerns about privacy protection are becoming increasingly prominent [14]. The release of open data must carefully 
consider personal privacy and data security, making the prevention of sensitive information leakage a critical aspect of open data 
management. Moreover, the quality of open data directly ifluences the effectiveness of its use [15], with accuracy, completeness, 
and timeliness being essential factors to ensure its utility [16]. A comprehensive open data management system must be established 
to drive the development of the digital economy, digital culture, and digital society. In this context, open data managers play a crucial 
role, alongside data providers and users [17]. These managers, who may include personnel from specialized management agencies, 
government staff, or even members of the public, have the option to engage in the management of open data. When deciding on their 
strategies for whether or not to participate in the management of open data, they evaluate their payoffs through a learning mechanism, 
continually adjusting their strategies until they identify the most favorable one, which is a dynamic game process. In addition, since 
not all open data managers interact directly with each other, and interactions typically occur with neighboring managers, complex 
networks offer an ideal framework to model these interactions [18,19]. In this framework, nodes represent open data managers and 
edges capture the interactions between different managers.

Networked evolutionary games, which combine complex networks with evolutionary game theory [20,21], provide an effective 
framework for modeling the relationship between open data managers and their decision-making processes through learning mech
anisms. It provides a powerful tool for studying the emergence and maintenance of various self-organizing behaviors in both natural 
and social systems [22], attracting attention from researchers across a variety of fields, including biology [23,24], physics [25,26], 
mathematics [27,28], computer science [29,30], and so on [31--33]. Many scholars have applied networked evolutionary games to 
explain the mechanisms behind the emergence of widespread cooperative behaviors and have identfied factors such as conformity 
[34,35], reward [36,37], and game transitions [38,39] as key drivers in this process. In addition, evolutionary games have recently 
been utilized to analyze strategic behaviors in the development of artficial intelligence and the adoption of new technologies [40--42], 
demonstrating their significant role in applications within the era of artficial intelligence and data science. Besides, many researchers 
have employed the powerful framework of networked evolutionary games to study various real-world management problems. For 
example, Song et al. [43] investigated the decision-making processes of participants in the collaborative air pollution management 
network based on networked evolutionary games and proposed countermeasures to address the synergistic effects of air pollution 
caused by regional heterogeneity. Kong et al. [44] developed an evolutionary game model to examine knowledge-sharing behavior 
within cluster innovation networks. They explored how bounded rational firms can achieve evolutionary equilibrium through con
tinuous adaptive learning and strategy optimization, and further analyzed the factors ifluencing evolutionary trajectories. Xu et al. 
[45] constructed an evolutionary game model for marine plastic waste management, applying networked evolutionary games to in
vestigate the impact of economic factors, relational structures, and game cofigurations on the evolution of management cooperation 
in marine plastic waste through simulation techniques.

In this paper, we utilize this powerful framework to explore cooperative behaviors in open data management. Specifically, the 
participation of open data managers in the management process is considered cooperative behavior, while non-participation is re
garded as defective behavior. Recognizing that the social dilemmas faced between open data managers are not static, we propose an 
innovative mechanism for social dilemma transitions. Concretely, the duration of the social dilemma faced between managers fol
lows a certain distribution, and once the duration is over, they will be faced with another different type of social dilemma. Through 
extensive simulations, we investigate the impact of this mechanism on the managers’ participation in open data management. The 
purpose of this paper is to analyze open data management using networked evolutionary games, contributing new insights to the 
field and offering a clear direction for promoting the green development of open data.

The structure of the rest of this paper is as follows. In Section 2, we present a detailed explanation of the model for open data 
management incorporating social dilemma transitions. In Section 3, we conduct extensive simulations and analyses to assess the 
impact of the proposed model on cooperative behaviors in open data management. Finally, in Section 4, we summarize the key 
findings of this study and outline potential directions for future research.



Applied Mathematics and Computation 496 (2025) 129364

3

T.P. Benko, B. Pi, Q. Li et al. 

2. Model

In this section, we present a comprehensive description of the model for cooperative behavior in open data management, employing 
the framework of networked evolutionary game theory. This section is organized into three main parts: Model Description, Social 
Dilemma Transition, and Payoff Calculation and Strategy Update.

2.1. Model description

In practice, open data managers do not interact with all other managers in the population but typically engage with their neigh
boring managers. To accurately capture this phenomenon, we employ complex networks to model the interaction structure among 
managers. In this framework, nodes represent managers and edges indicate the interactions between them.

The management of open data can be considered a public good, akin to social security, which is subject to free-riding behavior 
in cooperative settings. If open data managers opt not to participate in the management process, they can avoid the costs associated 
with participation. However, this choice also means they forgo potential benfits, such as an enhanced public reputation, which 
ultimately harms society as a whole. In contrast, if all open data managers choose to participate, they will gain greater rewards 
through the sharing of skills and experiences, benfiting both the market environment and society at large. Moreover, the interactions 
between different open data managers are often dynamic and varied. Strategic decision-making in this context mirrors several well
known dilemmas in game theory, such as the prisoner’s dilemma, the snowdrift game, and the stag hunt game. These games are 
commonly used to study the potential for cooperation among self-interested individuals seeking to maximize their personal benfits. 
For example, the prisoner’s dilemma has received significant attention as a model for exploring the evolution of cooperation, with 
recent applications in climate and environmental governance [46,47]. Given the dynamic nature of the dilemmas faced between open 
data managers, we incorporate three distinct and classical game-theoretic models, including the prisoner’s dilemma, the snowdrift 
game, and the stag hunt game, to describe the payoffs in the evolutionary games between open data managers.

2.2. Social dilemma transition

As we have stated before, the dilemmas faced between open data managers are not fixed. Thus in this subsection, we provide a 
detailed description of the transitions between different social dilemmas, assuming that the durations of the various social dilemmas 
encountered by managers follow an exponential distribution, i.e., the duration of social dilemma 𝑖 faced between managers satifies

𝑇𝑖(𝑡) = 1 − exp(−𝜆𝑖𝑡), (1)

where 𝜆𝑖 denotes the exponential rate. Once the duration has elapsed, the social dilemma between open data managers will transition 
to a different scenario. We emphasize that the social dilemmas faced by the same manager interacting with different managers can 
be different. In this paper, we primarily focus on three distinct scenarios of social dilemmas, which are modeled by three different 
dilemmas in game theory, including the prisoner’s dilemma, the snowdrift game, and the stag hunt game. Specifically, the prisoner’s 
dilemma is a non-zero-sum game typically characterized by whether two captured prisoners choose to defect or cooperate, with the 
only Nash equilibrium being mutual defection. Although cooperation would be mutually benficial, it is often difficult to achieve due 
to a lack of trust. The payoff matrix of the prisoner’s dilemma is given by

𝑀1 =
(
1 −𝑟
𝑏 0

)
, (2)

where 𝑏 ∈ [1,2] and −𝑟 ∈ [−1,0] separately denote the temptation to defect and the sucker’s payoff.
The snowdrift game describes a situation in which two individuals face a pile of snow and need to cooperate to remove it. In 

this game, there exists a mixed Nash equilibrium where each individual has a certain probability of choosing either cooperation 
or defection. The outcomes of the game encourage partial cooperation but do not converge to a state of complete cooperation or 
complete defection. The payoff matrix of the snowdrift game can be expressed by

𝑀2 =
(

1 1 − 𝑟

1 + 𝑟 0

)
, (3)

where 𝑟 ∈ [0,1] represents the cost-to-benefit ratio when both individuals select the cooperative strategy.
The stag hunt game models a scenario in which two parties can either cooperate to hunt a large prey, such as a deer, or act 

alone to capture a small prey, such as a rabbit. This game has two pure-strategy Nash equilibrium, i.e., (cooperation, cooperation) 
and (defection, defection). It highlights the importance of trust and coordination, offering the potential for high payoffs through 
cooperation, though there is also a risk of coordination failure. The payoff matrix of the stag hunt game is shown as follows

𝑀3 =
(
1 −𝑟
𝑟 0

)
, (4)

where 𝑟 is a flexible parameter that takes a value in the range of 0 to 1.
Overall, cooperation is difficult to sustain in the prisoner’s dilemma, partial cooperation is possible in the snowdrift game, and 

full cooperation is both achievable and advantageous in the stag hunt game. Additionally, defection is the dominant strategy in the 
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Fig. 1. An illustration of social dilemma transition. The interaction dilemmas between open data managers do not remain constant, but shift over time at specific 
transition rates. PDG, SDG, and SHG represent three different types of social dilemmas, and the arrows, along with the letters above and below, indicate the direction 
and rate of the transitions between these social dilemmas.

prisoner’s dilemma, mixed strategies are possible in the snowdrift game, and the stag hunt game features multiple equilibria that 
require trust and coordination. These differences make such three game models particularly suitable for analyzing various types of 
strategic interactions and cooperation challenges, which can be effectively applied to describe the social dilemmas between open data 
managers. To provide a clear illustration of social dilemma transitions, we show an example diagram in Fig. 1. All the interaction 
dilemmas between open data managers evolve as time progresses, with the social dilemmas between open data managers shifting 
from PDG (SDG) to SDG (PDG) at a rate of 𝜆1 (𝜇1) and from SDG (SHG) to SHG (SDG) at a rate of 𝜆2 (𝜇2).

2.3. Payoff calculation and strategy update

Next, we describe the payoff calculation and strategy update for open data managers. Concretely, at each discrete time step, the 
manager in the network needs to synchronously decide whether to participate in the management of open data, where participation 
in management can be regarded as a cooperative behavior and is represented by the vector 𝑠 = (1,0)𝑇 , while non-participation in 
management is considered as a defective behavior and denoted by the vector 𝑠 = (0,1)𝑇 . Afterward, each open data manager 𝑥
engages in the respective game with all adjacent open data managers in the network to obtain his/her cumulative payoff Π𝑥 , which 
is given by

Π𝑥 =
∑
𝑦∈Ω𝑥

𝑠𝑇
𝑥
𝑀𝑥𝑦𝑠𝑦, (5)

where Ω𝑥 indicates the neighbor set of open data manager 𝑥, determined by the network structure, and 𝑀𝑥𝑦 denotes the social 
dilemma faced between open data managers 𝑥 and 𝑦.

After each open data manager in the complex networks plays the respective game with their neighbors and accumulates the 
payoff, they will consider updating their strategies based on the cumulative payoff, which is modeled by the classical Fermi function. 
Specifically, open data manager 𝑥 randomly selects a manager 𝑦 from his/her neighbor set Ω𝑥 for payoff comparison and decides to 
adopt manager 𝑦’s strategy with a probability given by

𝑃 (𝑠𝑥 ← 𝑠𝑦) =
1 

1 + exp[(Π𝑥 −Π𝑦)∕𝜅]
, (6)

where 𝑠𝑥 and Π𝑥 are the strategy and payoff of open data manager 𝑥, respectively, and 𝜅 means the noise factor, which accounts 
for the irrational choices made by the open data manager during the game [48]. In other words, if the noise factor is large, the 
probability derived from Eq. (6) will approach 0.5. In this case, the manager becomes completely irrational and will randomly either 
retain his/her original strategy or adopt the strategy of the neighbor 𝑦 with equal probability. Furthermore, if the payoff of open 
data manager 𝑥 is greater than that of manager 𝑦, then manager 𝑥 will maintain his/her original strategy with a higher probability. 
However, due to individual irrationality, there remains a small probability that open data manager 𝑥 will adopt the strategy of his/her 
neighbor 𝑦.

3. Simulations and results

In this section, we perform a series of simulations to explore the impact of the model proposed in this paper on the adoption 
of cooperative behavior. Concretely, we first provide a detailed description of the population structure and simulation setup among 
the open data managers. Subsequently, we investigate the impacts of the payoff parameters and transition rates on the managers’ 
decisions to participate in open data management, observing the emergence and maintenance of cooperative behaviors from a micro 
perspective. We eventually consider the ifluence of different patterns of social dilemma transition on the evolution of cooperation.

3.1. Methods

To simulate the population structure of open data managers, we primarily use small-world networks and scale-free networks, which 
are both classical models in the field of complex networks. These two types of networks have wide practical applications due to their 
unique properties. For example, small-world networks are commonly utilized to model social networks, transportation networks, and 
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Fig. 2. Heat maps of the frequency of open data managers participating in the management concerning the payoff parameters 𝑏 and 𝑟. The 𝑥-axis and 𝑦-axis 
denote the payoff parameters 𝑟∈ [0,1] and 𝑏 ∈ [1,2] in different social dilemmas. Each open data manager randomly decides to participate or not in the management 
at the initial moment. Subplots (a) and (b) show the cooperative proportion regarding payoff parameters 𝑏 and 𝑟 under the interaction structure among open data 
managers as small-world networks and scale-free networks, respectively.

ecological networks, etc. In these networks, nodes tend to have strong local connections, characterized by high clustering coefficients 
and short average path lengths, which means that neighboring nodes in small-world networks are likely to be interconnected, forming 
dense clusters. Additionally, despite having a large number of nodes, the distance between any two nodes in a small-world network is 
typically short, requiring only a few edges to connect them. On the other hand, scale-free networks are frequently employed to model 
the Internet, financial networks, and virus propagation, among other systems, and they emphasize the heterogeneity among nodes 
and the importance of hub nodes. The degree distribution of a scale-free network follows a power law distribution, i.e., 𝑃 (𝑘) ∼ 𝑘−𝛾 , 
where 𝑃 (𝑘) denotes the probability that a node has degree 𝑘 and 𝛾 usually falls between 2 and 3. In a scale-free network, most nodes 
have small degrees, while a small number of nodes, the ``hubs'' possess large degrees and play a crucial role in the network. While 
scale-free networks are robust to the random removal of nodes, they are highly vulnerable to the removal of hub nodes, which can 
lead to network collapse.

In practice, there exists frequent close cooperation and information flow among open data managers. For example, managers 
within the same domain typically have more direct connections, resulting in a high clustering coefficient. In addition, these managers 
can establish connections with others, even across distant regions, via a few intermediary managers, leading to a short average 
path length. Small-world networks precisely capture this balance between local connections and global reach. Local cooperation 
within small-world networks facilitates the sharing of information and resources, while the short paths between distant nodes help 
address cross-regional or cross-organizational coordination challenges, which are vital for effective cooperation and information flow 
in open data management systems. On the other hand, open data management systems often feature certain managers with greater 
resources, experience, or ifluence, who function as ``hub nodes''. These managers play a key role in coordinating and ifluencing 
the decision-making processes of the entire system. This dynamic is well represented by the power law distribution of scale-free 
networks, where a few managers possess high degrees of ``connectivity'' or ifluence. Additionally, scale-free networks can evolve 
adaptively as new managers are introduced, aligning with the dynamic nature of open data management systems. Therefore, the use of 
small-world networks (SW) [49] and scale-free networks (SF) [50] to model the structure of interactions among open data managers 
is particularly appropriate. These two network models effectively capture the essential characteristics of interactions in open data 
management, especially in terms of cooperation, competition, and information flow between different open data managers.

In the simulations presented below, both the SW and SF networks are fixed at a size of 𝑁 = 10000. Each result is obtained by 
averaging multiple independent simulations, where each simulation involves a total of 10000 Monte Carlo steps, with the final result 
averaged over the last 500 steps. Moreover, the noise factor, consistent with most previous studies [51,52], is set at 𝜅 = 0.1. In all 
simulations, the open data managers initially make their decisions with equal probability on whether to participate in open data 
management. This means that, at the start, the frequency of cooperators in the network is approximately 0.5.

3.2. Effect of payoff parameters on cooperative behavior

In this subsection, we study the effect of the payoff parameters 𝑏 and 𝑟, as presented in Eqs. (2), (3), and (4), on the adoption of 
participatory management behaviors by open data managers with social dilemma transitions, where the rate of social dilemma shifts 
from PDG (SDG) to SDG (PDG) is set to 𝜆1 = 0.05 (𝜇1 = 0.04), and the rate of transitions from SDG (SHG) to SHG (SDG) is set to 
𝜆2 = 0.03 (𝜇2 = 0.02). The results of open data managers adopting cooperative behaviors on SW and SF networks with respect to the 
payoff parameters 𝑏 and 𝑟 are illustrated in Figs. 2(a) and 2(b), respectively. The ranges of the 𝑥-axis and 𝑦-axis are separately set to 
[0, 1] and [1, 2]. Each result is averaged for 15 independent simulations for each set of parameters to ensure accuracy.

When the interaction structures among open data managers are represented by small-world and scale-free networks, the results 
displayed in Figs. 2(a) and 2(b) indicate that the payoff parameters 𝑏 and 𝑟 significantly ifluence whether open data managers 
participate in management. Specifically, when the payoff parameter 𝑏 is fixed, increasing the parameter 𝑟 leads to the emergence of 
defective behaviors among the open data managers. As 𝑟 increases further, all open data managers eventually cease participation in 
the management. The effect of 𝑏 on cooperative behaviors depends on the value of 𝑟. When the value of 𝑟 is relatively small (large), 
changes in 𝑏 do not impact the outcome. In contrast, when the value of 𝑟 is moderate, i.e., 𝑟 is around 0.5, increasing 𝑏 causes 
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Fig. 3. Influence of transition rates on cooperative behaviors of open data managers. The 𝑦-axis and 𝑥-axis represent the transition rates from SDG to PDG (𝜇1) 
and from SHG to SDG (𝜇2), where both 𝜇1 and 𝜇2 are in the range of [0.005,0.1]. Each open data manager randomly decides to participate or not in the management 
at the initial moment. Panels (a) and (b) demonstrate the cooperative frequency regarding transition rates 𝜇1 and 𝜇2 under the interaction structure among open data 
managers as small-world networks and scale-free networks, respectively.

a decline in the number of cooperative managers. Moreover, a comparison between Figs. 2(a) and 2(b) reveals that the scale-free 
network more effectively encourages open data managers to participate in management compared to the small-world network. This 
is evident from the significantly larger dark red region (indicating full cooperation) in Fig. 2(b), alongside the notably smaller dark 
blue region (indicating full defection) compared to Fig. 2(a). These results suggest that population structure has a significant role in 
shaping the decisions of open data managers.

3.3. Ifluence of transition rates on cooperation

Considering that social dilemma transitions are typically complex in practice, we next examine the impact of different social 
dilemma transition rates 𝜇1 and 𝜇2 on the evolutionary outcomes, and the results are presented in Figs. 3(a) and 3(b), which corre
spond to the population structure of open data managers as SW and SF networks, respectively. Each result is obtained by taking the 
average of 15 independent simulations for each set of parameters to ensure accuracy. Both the transition rates from SDG to PDG (𝜇1) 
and from SHG to SDG (𝜇2) are set to [0.005,0.1], and the other two transition rates from PDG to SDG (𝜆1) and from SDG to SHG (𝜆2) 
are separately fixed to 𝜆1 = 0.05 and 𝜆2 = 0.03.

It is evident from Fig. 3 that the population structure has a critical impact on the decision-making of open data managers. 
Specifically, if the population structure is a SW network, the result displayed in Fig. 3(a) illustrates that all managers are involved in 
open data management when both transition rates 𝜇1 and 𝜇2 are relatively low. However, as these transition rates 𝜇1 and 𝜇2 increase, 
some managers gradually opt out of the management process, leading to a situation where no open data managers participate once 
𝜇1 and 𝜇2 surpass the certain threshold. This phenomenon occurs due to the fact that as the transition rates 𝜇1 and 𝜇2 grow, it will 
lead to an increased prevalence of the prisoner’s dilemma, which is the least conducive to sustaining cooperation compared to the 
snowdrift game and stag hunt game. The result in Fig. 3(b), corresponding to the SF network, shows that in most cases, open data 
managers continue to participate in management, as indicated by the dominance of the dark red color in the figure. However, when 
the transition rate 𝜇1 becomes too large, most social dilemmas encountered by open data managers are PDG, causing no managers 
to participate in the management of open data, which is consistent with the result in the SW network demonstrated in Fig. 3(a).

3.4. Snapshots of the evolution of cooperators from micro perspective

To more clearly and intuitively observe the emergence and persistence of cooperators from a micro perspective, we replace 
the population structure of open data managers with a square lattice network with periodic boundaries possessing Von Neumann 
neighborhoods, i.e., each manager has four neighbors. The size of the network is set as 𝑁 = 100 × 100, and we investigate the 
evolution of open data managers adopting cooperative behaviors under three different groups of parameters (𝑏, 𝜆1) = (1.5, 0.050), 
(1.7, 0.050), (1.5, 0.035). Other parameters, including the payoff parameter and transition rates, are fixed as 𝑟 = 0.4, 𝜆2 = 0.04, 
𝜇1 = 0.04, and 𝜇2 = 0.02. The snapshots of cooperators and defectors at time steps 𝑡 = 10, 200, 1000, and 2000 are shown in Fig. 4. 
In these snapshots, each square lattice denotes an open data manager, with red squares indicating defectors (those not participating 
in management) and green squares indicating cooperators (those participating in management).

From Figs. 4(1), (5), and (9), we can see that although the cooperators and defectors are initially distributed randomly across 
the square lattice network, the number of defectors significantly exceeds that of cooperators as the evolution proceeds to 𝑡 = 10. 
Subsequently, the cooperators in the three scenarios spring back up again, with different levels of cooperation in the end, and it 
can be observed that cooperators mainly resist the invasion of defectors by forming clusters. Specifically, by comparing the results 
demonstrated in the first row with the second row, we find that for the parameter set (𝑏, 𝜆1) = (1.5, 0.050), the system eventually 
evolves to a state of pure cooperation, where all open data managers are involved in the management. In contrast, for the situation 
of (𝑏, 𝜆1) = (1.7, 0.050), there are still a small number of open data managers in the network who are not participating in the 
management, indicating that higher values of 𝑏 hinder the emergence of cooperation. This is consistent with the results observed in 
the SW and SF networks in subsection 3.2, where a decrease in 𝑏 favors the emergence and maintenance of cooperators. Furthermore, 
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Fig. 4. Snapshots of the evolution of cooperators from the micro perspective. The population structure and scale are set to the square lattice network with periodic 
boundaries possessing Von Neumann neighborhoods and 100×100, where each square lattice represents an open data manager. Red and green colors indicate open data 
managers taking the strategy of not participating and participating in the management, respectively. The rows represent snapshots of the evolution of the cooperators 
at evolutionary time 𝑡 = 10, 200, 1000, and 2000 under the specific parameter pairs (𝑏, 𝜆1) of (1.5, 0.050), (1.7, 0.050), and (1.5, 0.035).

comparing the results of the first line with the third line, we get that in the case of (𝑏, 𝜆1) = (1.5, 0.035), the number of cooperators 
in the network is slightly higher than that of defectors at 𝑡 = 2000, whereas in the situation of (𝑏, 𝜆1) = (1.5, 0.050), the defectors 
are eventually extinct. Therefore, an increase in the transition rate 𝜆1 promotes the evolution of cooperation since it reduces the 
prevalence of the PDG, which is the most detrimental social dilemma for the persistence of cooperative behaviors.

3.5. Impact of social dilemma transition patterns on the evolution of cooperation

It is worth noting that in all previous simulations, the durations of the different social dilemmas faced between managers are 
assumed to follow the exponential distribution. In this subsection, we examine the impact of different patterns of social dilemma 
transitions on the results and primarily focus on two additional scenarios besides the exponential distribution, including durations 
of the social dilemmas that are fixed and obey the uniform distribution. The results of the evolution of the cooperation frequency 
over time in SW networks and square lattice networks with periodic boundaries (SL) under these different patterns of social dilemma 
transitions are shown in Figs. 5(a) and 5(b), respectively, where red and blue represent durations following the exponential and 
uniform distributions, respectively, while green indicates the fixed value for the duration. The parameter settings associated with 
the duration of social dilemmas obeying the exponential distribution are: 𝜆1 = 0.05, 𝜆2 = 0.03, 𝜇1 = 0.04, and 𝜇2 = 0.04. To ensure 
comparability of the results, the means of the random numbers generated for the other two scenarios are set to match the exponential 
distribution. For example, in the scenario of uniform distribution, the duration of the social dilemma PDG 𝑇𝑃𝐷𝐺(𝑡) obeys a uniform 
distribution ranging from 1∕𝜆1 − 10 to 1∕𝜆1 + 10, i.e., 𝑇𝑃𝐷𝐺(𝑡) ∼𝑈 (1∕𝜆1 − 10,1∕𝜆1 + 10). In the situation of fixed value, the duration 
of the social dilemma PDG remains constant at 1∕𝜆1 , i.e., 𝑇𝑃𝐷𝐺(𝑡) = 1∕𝜆1. The remaining parameters, including network size and 
payoff parameters, are fixed to 𝑁 = 10000, 𝑏= 1.35, and 𝑟 = 0.41, respectively. All results are obtained by averaging 50 independent 
simulations.

Given that the stabilization rate of the cooperation frequency 𝑓𝑐 is relatively fast on both networks, we employ a logarithmic 
coordinate for the evolutionary time 𝑡 on the 𝑥-axis to more clearly observe the trend of cooperation evolution. From the results, 
we find that the number of cooperators on both networks initially decreases before fluctuating around a certain value. By averaging 
the cooperation frequency over the last 500 steps of a 10000-step Monte Carlo simulation, we obtain the following results: for 
the SW network depicted in Fig. 5(a), the cooperation frequencies under the scenarios of the exponential distribution, uniform 
distribution, and fixed value are 0.5099, 0.2702, and 0.1689, respectively. For the SL network shown in Fig. 5(b), the corresponding 
cooperation frequencies are 0.1459, 0.1493, and 0.0, respectively. These results suggest that when the duration of social dilemmas 
follows the uniform distribution, it more effectively promotes the evolution of cooperative behaviors than when the duration is fixed. 
However, the uniform distribution has a weaker facilitative effect compared to the exponential distribution on the SW network, and 
the difference between the facilitative effect of the exponential distribution and that of the uniform distribution on the SL network 
is minor. Furthermore, a comparison of the results in Figs. 5(a) and 5(b) reveals that the SW network structure is more conducive to 
promoting open data managers’ participation in management than the SL network, which means that the population structure plays 
an important role in the decision-making of open data managers.
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Fig. 5. Evolutionary curves of the cooperation frequency over time under different patterns of social dilemma transitions. Subplots (a) and (b) demonstrate 
the results for the SW and SL networks, respectively, where the 𝑥-axis is set to logarithmic coordinates for better observing the upward and downward trends in the 
evolution of cooperation frequency, and the 𝑦-axis denotes the cooperation frequency 𝑓𝑐 , i.e., the ratio of cooperators in the network. Red, blue, and green colors 
separately indicate that the durations of social dilemmas faced between open data managers follow the exponential distribution, uniform distribution, and fixed values.

4. Conclusions and outlooks

Open data, a newly emerging concept, is profoundly transforming the way information is accessed and utilized. By establishing 
a comprehensive open data management system, open data provides new momentum for the sustainable development of the digital 
economy, digital culture, and digital society. In this paper, we investigate cooperative behaviors in open data management using 
networked evolutionary games, where complex networks model the interaction structure between open data managers, and evolu
tionary game theory is employed to study how bounded rational managers can maximize their payoffs through repeated interactions. 
Building on the widespread ``small-world effect'' and the ``Matthew effect'', we mainly consider two types of open data manager pop
ulation structures, including small-world networks and scale-free networks. Additionally, we introduce the concept of social dilemma 
transitions to capture the dynamic evolution of social dilemmas faced between open data managers in practice. In our simulations, we 
first generate heat maps of the cooperation proportion on the SW and SF networks with respect to the payoff parameters. We find that 
lowering the payoff parameters 𝑏 and 𝑟 promotes open data managers’ participation in management. We then explore the impact of 
transition rates on cooperation behavior and discover that to foster cooperation, managers should encounter as few PDG-type social 
dilemmas as possible, meaning the transition rates 𝜇1 and 𝜇2 should be minimized. Besides, we examine the evolution of cooperative 
open data managers on square lattice networks with periodic boundaries from a micro perspective and find that cooperators can effec
tively resist the intrusion of defectors by forming clusters. Furthermore, we analyze the evolutionary curves of cooperation frequency 
under three patterns of social dilemma transitions, including the duration of social dilemmas following the exponential distribution, 
uniform distribution, and fixed value. We find that the exponential distribution of social dilemma durations is the most favorable for 
open data managers to participate in management on the SW network, while the fixed value proves to be the least favorable on both 
SW and SL networks. Moreover, by comparing the results across all simulations, we highlight the significant impact of population 
structure on the decision-making of open data managers.

This study presents a valuable contribution to understanding cooperative behavior in open data management; however, there 
are several limitations and avenues for future research. On the one hand, the development of open data generally involves multiple 
stakeholders such as open data users, providers, and managers, but this paper primarily focuses on open data managers. Expanding the 
model to incorporate interactions among all relevant actors would provide a more comprehensive view of open data management. 
On the other hand, the social dilemma transitions considered in this study are limited to three classic types, and the direction of 
transitions is fixed. Future work could extend this model by introducing a more dynamic set of social dilemma types and transition 
patterns, allowing for greater flexibility and realism. Therefore, in future research, we can consider constructing a multilayer network 
structure [53,54] to better capture the complex interactions between different types of individuals in open data and add other social 
dilemma models and transition patterns [55,56] to enhance the realism of the model. Finally, we hope that the findings of this paper 
will serve as a foundation for further research on cooperation in open data management and inspire new perspectives and models to 
better address the challenges of fostering cooperation in open data management.
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