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Evolutionary Dynamics With Seltf-Interaction
Learning in Networked Systems

Ziyan Zeng ", Minyu Feng

Abstract—The evolution of cooperation in networked systems
helps to understand the dynamics in social networks, multi-agent
systems, and biological species. The self-persistence of individual
strategies is common in real-world decision making. The self-
replacement of strategies in evolutionary dynamics forms a selec-
tion amplifier, allows an agent to insist on its autologous strategy,
and helps the networked system to avoid full defection. In this
paper, we study the self-interaction learning in the networked
evolutionary dynamics. We propose a self-interaction landscape to
capture the strength of an agent’s self-loop to reproduce the strat-
egy based on local topology. We find that proper self-interaction
can reduce the condition for cooperation and help cooperators to
prevail in the system. For a system that favors the evolution of
spite, the self-interaction can save cooperative agents from being
harmed. Our results on random networks further suggest that an
appropriate self-interaction landscape can significantly reduce the
critical condition for advantageous mutants, especially for large-
degree networks.

Index Terms—Evolutionary dynamics, evolutionary games,
networked systems, self-interaction learning.

I. INTRODUCTION

nificant research attention since Darwin laid the main
principle [1]. In biological systems, successful species with high
fecundity can survive and dominate the whole system [2], [3],
[4]. In human populations, profitable strategies that bring agents
high payoff or fitness can be propagated and fixed in society [5],
[6], the most important enigma is the evolution of cooperation.
The evolutionary game theory provides a powerful framework to
address it [7], where fruitful results are obtained in well-mixed
systems. Additionally, with the development of complex net-
work theory [8], structured systems that are described by graphs
with vertices and edges are found to be a useful tool to model
realistic environments [9], [10]. The most representative social
dilemma situations are captured via the celebrated prisoner’s
dilemma [11], [12] or public goods games [13].

T HE evolution of species and behaviors has attracted sig-
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The evolution of cooperation is a stochastic process with two
absorbing barriers [14], [15], including pure cooperation and
pure defection, if we do not consider strategy mutation. If the
fixation probability of cooperation is higher than the neutral
drift in the Moran process [16], [17], then cooperation can be
favored in this system. A well-known condition for cooperation
is that the benefit-to-cost ratio should be higher than the mean
degree [18] or the mean degree of nearest neighbors [19] if
the system is large enough. However, this condition may be
too demanding, especially in large-scale networks, where an
agent may connect to more than hundreds of neighbors. The
question is, what network structure and dynamic mechanism
can facilitate or promote the evolution of cooperation? To
answer this question, researchers have proposed numerous mod-
els [20], [21]. For example, the game transition model in evolu-
tionary dynamics shows a behavior-based changing environment
can result in a favorable outcome for cooperation [22], [23].
Another simple and powerful framework to promote cooperation
is the reputation mechanism [24], [25], [26], [27], which may
have arisen in early human culture.

This article emphasizes the strategy update potential from
self-replacement angle. Naturally, in real-world scenarios, the
offspring can take the place of its parent, and an agent may
also insist on its original strategy when compared to the neigh-
bor information. Recent research shows that a graph with
self-loops can be a strong amplification of selection for ad-
vantageous mutants [28], [29]. This suggests that the fixation
of cooperation may be enhanced with self-interaction. Re-
cent studies [30], [31] confirmed that such self-interaction can
somehow promote cooperation in isothermal graphs via the
identity-by-descent method [32] and pair approximation [33].
If mutation is considered in the evolutionary dynamics, self-
interaction is detrimental for the advantageous mutants [34].
However, these works mainly focus on networks with regular
topology. Additionally, the self-interaction weights are often
the same for all vertices in a network to simplify the prob-
lem. To our best knowledge it is still unclear what kind of
self-interaction is beneficial for the fixation of cooperation be-
yond the isothermal graph and homogeneous self-interaction
strength. To fill this gap, in this paper, we study the effect of
self-interaction learning in networked systems including partic-
ular graph families, synthetic networks, and real-world network
data sets. The contribution of this article can be highlighted as
follows:

1) We propose an evolutionary game model in networked

system with self-interaction landscapes, where each agent
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has a certain probability to maintain its strategy based on
independent self-loop in learning graph.

2) We present the critical condition for cooperation with
self-interaction strength. We identify the condition of
self-interaction that can always allow the system to favor
cooperation in several graph families.

3) We analyze the effect of self-interaction in several syn-
thetic and real networks. We show that proper self-
interaction can significantly reduce the condition for co-
operation, especially if the network degree is high.

The organization of the remaining part is as follows: In
Section II, we provide a literature review for evolutionary
dynamics in networks. In Section III, we propose the self-
interaction landscape and introduce the evolutionary donation
game in networked systems. In Section IV, we study the condi-
tion for cooperation in specific graph families. In Section V, we
analyze the results for specific graph families and perform fur-
ther simulations in random graphs and real-world network data
sets. In Section VI, we conclude our work, discuss some open
issues, and outline some potential future research directions.

II. LITERATURE REVIEW

In this section, we review the current literature on evolutionary
dynamics in complex networks that establishes the research
context.

To reveal the emergence of mutual cooperation from games
with defective Nash equilibrium in social systems, spatial struc-
ture was first introduced into prisoner’s dilemmas in [9], demon-
strating chaotically changing spatial patterns in which cooper-
ators and defectors both persist. Since then, spatial structures
have been widely regarded as a framework to overcome social
dilemmas such as the prisoner’s dilemma [35] and the public
goods game [36]. However, [37] revealed that spatial structure
does not always enhance cooperation; in snowdrift game, the
cooperation level can even fall below that in the mixed equilib-
rium of well-mixed populations. Studies on scale-free networks
suggested that heterogeneity offers a unifying explanation for
the promotion of cooperation [10], [38]. With the development
of network theory, researchers have expanded their focus to
multilayer networks [39], time-varying networks [40], [41], and
higher-order networks [42], [43].

In addition to the effects of network topology on cooperation,
scholars have explored various behavioral and social mecha-
nisms. Punishment [44], [45] and reward [46] have been shown
to promote cooperation under specific conditions. Reputation-
based mechanisms [47], [48], which update the accumulated
behavioral history of individuals, also play a significant role
in strategy selection. With the rise of large language models,
reinforcement learning has emerged as an important topic in
this area [49], [50]. [51] proposed a memory-based evolution-
ary game involving dynamic interactions between learners and
profiteers, demonstrating that memory mechanisms can promote
cooperative behavior among profiteers and that higher learn-
ing rates lead to more cooperators. Similarly, [52] introduced
a theoretically grounded double Q-learning algorithm, which
significantly enhances the level of cooperation.

Obtaining exact solutions for evolutionary games on finite
networks remains challenging. Fortunately, several mathemat-
ical frameworks have been developed to analyze cooperation
and interpret phenomena observed in Monte Carlo simulations.
A key contribution was made in [18], which derived the con-
dition b/c > k for sufficiently large regular networks using
pairwise approximation. This was extended to heterogeneous
networks in [19], where the condition becomes b/c > (kpn).
A more rigorous result was later provided in [53], yielding
b/c > (N —2)/(N/Ek — 2), valid for any population size N >
2. The general voter model perturbation method [54] introduced
algebraically explicit first-order approximations for fixation
probabilities based on coalescing random walks (CRW). [32]
formalized the identity-by-descent (IBD) approach to derive
cooperation conditions in vertex-transitive graphs.

More recently, with advancements in mathematical method-
ology, researchers have investigated the role of various social
mechanisms. For example, [55] studied cooperation under mu-
tation, finding that high mutation rates reduce clustering among
cooperators and hinder cooperative success. By extending the
stochastic game model [56] to structured populations, [22]
showed that the cooperation level in games of different values
is closely related to node degrees. Further studies on high-order
and heterogeneous networks include [57], which demonstrated
that higher-order interactions favor cooperation in hypergraphs
with multiple communities, and [58], which found that spatial
heterogeneity tends to suppress cooperation, while temporal
heterogeneity tends to promote it. To derive closed-form re-
sults, several studies have focused on regular networks. For
instance, [59] examined incentive strategies in structured pop-
ulations and found that optimal incentive protocols, both pos-
itive and negative, are time-invariant. Meanwhile, [60] derived
the replicator equation for any n-strategy multiplayer game
under weak selection, and proposed the “Satisfied-Cooperate,
Unsatisfied-Defect” update rule based on aspiration, which out-
performs other aspiration-based rules in promoting cooperation
in the prisoner’s dilemma game.

There are also several research papers that investigate the ef-
fects of real-world social mechanisms on individual cooperative
behavior. [61] described an economic experiment, the Mutual
Aid game, which tested theoretical predictions and found that
pool punishment emerges only when second-order free riders are
punished, while peer punishment is more stable than previously
expected. [62] compared competitiveness across traditional
fishing societies, where local environmental factors determine
whether fishermen operate individually or within collectives.
[63] employed a setting in which individuals were virtually
arranged on a spatial lattice and observed that spontaneous strat-
egy changes, representing mutations or exploratory behavior,
occur more frequently than typically assumed in theoretical
models. [64] conducted a series of economic experiments to
explore whether severe punishment is more effective than mild
punishment, and found that the effectiveness of punishment
stems not only from imposed fines but also from underlying
psychological factors. [65] designed an experiment to study
the emergence of cooperation when humans play the prisoner’s
dilemma on a network of a size comparable to that used in
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simulations, revealing that the cooperation level gradually de-
clines to an asymptotic state with low but nonzero cooperation.
Overall, these empirical studies highlight the complexity of
human behavior and underscore the importance of investigating
realistic social mechanisms.

III. EVOLUTIONARY DYNAMICS WITH SELF-INTERACTION
LANDSCAPES

In this section, we propose the evolutionary dynamics model
based on self-interaction landscapes. We first present the net-
work structure and our new definition of self-interaction land-
scapes. Then, we introduce the evolutionary dynamic model on
the actual network considering the non-mutation case.

A. The Network Structures and Self-Interaction Learning

We consider an undirected network framework G =
(V,E,W) composed of N = |V vertices, where V is the vertex
set, £ € V x V denotes the edge set, and VV presents the weight
set of all edges. The unweighted network class can be presented
by setting w;; = 1 for all edges (3, j). For simplicity, we do not
consider multiple edges in our model.

To study the effect of self-interaction among agents, here we
add weighted self-loops for all vertices based on each agent’s
property to capture the strength of self-interaction. Formally, we
assume that the weights of self-loops are based on the following
self-interaction landscapes.

Definition 1: Self-interaction landscape is a vector L =
[¢1,03,...,¢N] that describes the intensity of each agent’s self-
loop. For ¢ € V, the weight of self-loop w;; is defined as a
non-negative function £;(7;) : R — R™, where T; is a symbol
that describes a topology property of the agent i.

According to Definition 1, we describe the self-interaction
strength as the self-loop weight, depending on the local topology
property of each agent. Under this self-interaction mechanism,
each agent tends to insist on its own strategy based on the local
structure. In this paper, we mainly discuss the case that 7; = k;,
i.e., the self-loop weight is proportional to the degree of agent .
The vertex degree in a network is often bounded, therefore the
self-interaction strength is finite, i.e., £(k;) < +oo.

B. Evolutionary Dynamics With Self-Interaction Landscapes

We consider a two-person two-strategy donation game con-
sisting of cooperation (C') and defection (D) in the network
structure. Each agent takes one position of a vertex in the network
and can choose to be a cooperator or a defector. In the whole
network, cooperators pay a cost (c) to obtain the benefit (b), while
defectors pay no cost to get the same benefit. Here, the value b/c
is denoted as the benefit-to-cost ratio. Therefore, for two agents
playing such a game, the mutual cooperation brings each player
the payoff b — ¢, and mutual defection leads to the payoff 0 for
each player. For one-way cooperation, the cooperator receives
no benefit for a —c payoff, while the defector earns the full
benefit b. In the reasonable b > ¢ > 0 parameter range, this
game is well known as the prisoner’s dilemma game [66], where
the defector obtains the highest expected payoff, and mutual
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defection becomes the unique Nash equilibrium point in a single
round game.

We define the strategy vector of the network as S = (s;);cp €
{0,1}Y, where 0 and 1 denote the defection and cooperation,
respectively. The total payoff of an agent is the sum of payoffs
from interacting with all neighbors and itself, denoted as f;(S).
We translate this payoff into fitness as the reproductive rate of
the vertex ¢ in the exponential form F;(S) = exp[d f;(S)], where
0 € [0,1] denotes the strength of selection. It is worth noting
that we are mainly interested in the weak selection (0 < 1)
limit where games have only a small effect on microscopic
dynamics [15]. Regarding the strategy update, we consider a
death-birth (DB) update process in the continuous time axis.
The reason for considering DB is that this kind of replacement
dynamics often shows fundamental advantages for the fixation
of cooperation. The strategy update events occur through a
Poisson process at a rate of 1. During an elementary step an
agent is chosen randomly to die leaving an empty site. Then,
its neighbors compete for the empty site with the probability
proportional to their fitness.

In the absence of mutation the above-introduced evolution
process in a networked system gradually evolves into a pure
cooperation or pure defection state. Therefore, we are interested
in the fixation probabilities of the cooperation and defection,
denoted by pc and pp respectively. Accordingly, pc (pp)
presents the probability that a single cooperator (defector) in-
vades the pure defective (cooperative) networked system and
finally prevails the whole system.

IV. CONDITION FOR COOPERATION IN PARTICULAR GRAPH
FAMILIES

In this section, we study the condition for pc > pp with self-
interaction in some graph families. In particular, we consider
regular graphs, star graphs, and two modified stars. We first
consider the following lemma that helps us to reveal the potential
consequence of self-interactions [67].

Lemma 1: The fixation probability of cooperation in a net-
work with N vertices is

_ Ll 0@ @ )] 2
PC—N+2N{ n —H)(n n +0(6%), (1)
where 1(") is the expected coalescence time of all n-step random
walks over the network.

The proof can be found in Appendix A where we introduce
some technical terms which are used in the following analy-
sis. For the prisoner’s dilemma, if the fixation probability of
cooperation is higher than neutral drift, i.e., pc > 1/N, we
say that the selection favors cooperation. In this case, we also
have pp < 1/N, and therefore this condition is equivalent to
pc — pp > 0. We are interested in the critical point of the
benefit-to-cost ratio (b/c)} for the networked system with self-
interaction to favor cooperation. As Corollary 1 in [67] suggests,
we have |(b/c)*| > 1 for any population structure with N > 3.
For 1 < (b/c)}; < +o0, there is a higher probability that the
networked system will reach cooperation against defection if
the benefit-to-cost ratio exceeds (b/c)}. If —oo < (b/c); < —1
(representing not a prisoner’s dilemma), the dynamic process
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favors the evolution of spite instead of cooperation, where agents
tend to pay a cost to harm others. The self-interaction landscape
reduces the cooperation condition if 1 < (b/c); < (b/c)*, i.e.,
the positive threshold with self-interaction is smaller than with-
out self-interaction.

We first consider the family of regular graphs, where each
vertex has the same number of neighbors. Additionally, it is a
natural assumption that each agent has the same self-interaction
weight. The following theorem shows the condition for cooper-
ation and the advantages of self-interaction.

Theorem 1: For regular graphs with N vertices and degree k,
where self-interaction landscape is £ = [¢(k)]Y, we have

a) the critical benefit-to-cost ratio for cooperation is

(b)* N[ 4 3kL(k) + 263(k)] — 2 [k + (B))°
c)r  NkU(E) +k+20(0k) —2[k+ (R
(2)

b) if N > 2k and k > 2, any L can reduce the condition for
cooperation,

¢) if N < 2k, L can reduce the condition for cooperation
with

(k) >

N(4—k) + /N2k2 + 8kN + 16(k — N)(kN — N — k)

AN 1) N

otherwise, the selection favors the evolution of spite.

The precise proof is given in Appendix B. Theorem 1 shows
that cooperation can spread in a system distributed on a regular
graph. Additionally, for a sufficiently sparse regular graph that
satisfles NV > 2k and k > 2, the self-interaction can always
reduce the critical condition for the favor of cooperation. For
sparse regular graphs with & < 2, the self-interaction does not
always reduce the cooperation condition. For a dense regular
graph with N < 2k, there is a positive phase transition point
of £(k) that saves the system from the evolution of spite to
cooperation.

Next we present the results obtained for star topology. Some
recent works have shown that the stars with self-loops can be
an amplifier of selection. Here, we quantify the effect of self-
interaction in stars by coalescence random walk theory. A star
with N vertices is a complete bipartite graph with only one
hub agent (H) and N — 1 leaves (L). Therefore, at most one
agent has a degree higher than 1. For simplicity, we assume
that the self-interaction strength is identical for each leaf agent,
denoted as £(1). For the hub agent, we have {(N — 1). In the
following analysis, we simplify pl(-l-) as p;; and define a = £(1),
B =4(N —1),y=¥(N), and e = £(2) because the degrees in
the following graph families can only take some of these values.

Theorem 2: For a star graph with N vertices and the
self-interaction landscape £ = [((N —1),£(1),...,£(1)], de-
fine « = £(1) and 8 = ¢(N — 1), then we have

a) the critical benefit-to-cost ratio for cooperation is

b\ " N ar
() = e @)
c), Densiar
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where

Numgtar = 3(1+a)(=1+ N + f)

8 4  1la
2 N3 D22
{ 3+ (3+ 3

20 233 432
+N|:3+Oé (5—46)—7+?

47 842
t+a (3 178+ 3)] }
and

' Dengiar = 2 {5 [—N3+N <—1 - g) +N? (2 - g)

+8] + o’ [2+ N* — 58 + 45>

(&)

+ N? (—5+525> + N (=7

+¥ - 662) +N?(9-108 + 252)}

+ald+ N =118+ 1287

-28% + N? (—7+ 5;)

+ N? (15—16ﬁ+562)+N<—13

+@ —178% + 253” +a® [8 +4N*
— 228 +216% — 483
+N? (—20+128)+N? <36 — 463+ 272BZ>

+N (—28 + 566 — 69252 + 453)} } .
(6)

b) if self-interaction only applies to the hub agent (i.e., o« =
0), the evolution always favors the spite instead of the
cooperation if N > 2, and (%)Z\azo — —oo with N —
+00,

c) if the self-interaction only applies to leaf vertices (i.e.,
B = 0), there exists a positive critical threshold for the
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system to favor cooperation if N > 3, and with N — oo,

)

<b>* 30 + 14a? + 150 + 4
y )

%
£|A=0 203 + 8a? + 2«

We present the proof for Theorem 2 in Appendix C. For
the exceptional case of Theorem 2 (c) (N = 3), we can also
find a phase transitionpointa > —2 + /(3N — 4) /(N —2) =
V/5 — 2 ~ 0.236 to save the system from the evolution of spite.

In previous studies, star topology has been shown to be
disadvantageous to the emergence of cooperation. Accordingly,
the critical threshold for the fixation of cooperation is oo if
we do not consider self-loop [67]. This is because of the
equivalence between one-step and three-step expected coales-
cence time. Our proposed self-interaction landscape can buffer
the random walk, as well as the replacement of strategy. If
three-step expected coalescence time is greater than one-step,
ie. (N = Dapnp(pre +pi)) + munm (prm +piy) — 2 >
0, the condition for cooperation is positive. Theorem 2 highlights
that a proper self-interaction landscape can enhance the fixation
of cooperation in stars. But the self-interaction of the hub agent is
very harmful because the strategy replacement of the leader itself
is likely to induce the defection of the entire system. However,
the self-interaction of the leaves is crucial and helpful for the
system to overcome the defection.

Additionally, researchers often consider the graph surgery
to promote cooperation in stars. Here, we study the effect of
self-interaction in two modified stars. The first one is a graph
containing two stars joined by their hubs. The second one is a
ceiling fan where each leaf has one edge to another leaf. In the
following, we consider a joined star topology composed of two
connected star graphs via the hub vertices.

Theorem 3: For a graph that two stars with N ver-
tices are joined by hubs (2N vertices in total), with £ £
[6(N),¢(N),0(1),...,£(1)], and denote o =¢(1) and v =
{(N), then we have

a) the critical benefit-to-cost ratio for cooperation is

C

= ®)

*
(b> o NumStarHH
L DenStarHH

where

NumStarHH = 3(1 + CV)(N + ’V)

, 16 , 25 10
N2 20242 U
{ (O‘+3O‘+3O‘+3

4 2
+ N3 {a?’ (37 — 2) +a? (107—5)

34 29 13
+p 20’)/—3 “FE’Y—E

. 7 1 11
N2 a3 (-t L 2 1L 9
+ |:Oé < 37+3>+a<37

- +1)+a N0,._8
3 3 37
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and

26 1
+1> + =9y + ]

3 3
1 2 10
Nl [ —2~+ 2 2 2V 2
+ {a ( 3'y+3)+a< 37
8 32
—v+2) a2 -y -y 2
3 3
1 1 2
33_72_7 =
+37 37 374'3}
4
+v]=a®+4a® +a §72+4
3 3
4
3.2
= 9
+37 v-+3]} )

11

Denstoram = 2{N5(a4 + 7a3 +9a? + 5a + 2)

5 5
N4 42, <
# ot (30-3)
33 23 61
3 2
P —~—1
+a(27 2>+a<2'y 9)
33 25
+a(7—)+67—4]

2 2

11
+ N3 [oz4 (272 — ?74— 2)

1
+a? (32772 — 29y + 25) + o (44~*

107
——§a+1U+a@%2—%7+ﬂ

21 3
22212 Z
+57 7+2}

7 1
+ N2 [0/1 <—272+2’7— 2) T aby

o, 49 15 L (47 5
2 T 2!

Ui, 2 7,
g I TRy

79
(mf—2¢+h+g+mﬁﬂm2

1
+7+ﬂ+Nﬁf(—jf+w—Q
3 3 2 11 2
+a’( — 5y — 2y +6775 +a

41 S 21
gt 203 2.2 g3 20
(7 57 57 H13y 2>
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5
+ a(674 —167% — 572

17 7 13 3
P12 -5 ) 4 5t Gt - 0

5
+ 4y — 2] +a*(29* +1)

3 5
+a? (872—'Y+4>+a2<—2’y4

2

+ %72 - g'y+6) +a(;’)’5 -2y
- ;73+9v2—gv+4> +%75—74
N R 1}. (10)

b) if N > 2, we have (%)z > 0 that there exists a positive
benefit-to-cost ratio for the system to favor cooperation
regardless of a and ~y. The system never favors the evolu-
tion of spite.

c) if N — 400, the limit condition for cooperation is inde-

pendent of vy and presented as

T 204 +11a3 +18a2 + 10a+ 4
(11)

The proof can be found in Appendix D. Theorem 3 shows
that the hub-joined star system can favor cooperation if N > 2
with self-interaction. There is a positive critical threshold for
the dominance of cooperation, which is not a strict condition.
Therefore, a graph with two stars connected by hubs is an
excellent structure for the evolutionary dynamics considering
self-interaction. Additionally, the role of self-interaction in leaf
vertices is much more prominent than that of the hub vertices
with the increase of N.

Next, we consider the so-called ceiling fan (CF) where each
leaf of a star is only connected to one another by an edge. In this
case, the system size N should be an odd number.

Theorem4: Foraceiling fan with N verticesand £ £ [¢(N —
1),£(1),...,¢(1)],and denote ¢ = ¢(2) and 8 = ¢(N — 1), then
we have

a) the critical benefit-to-cost ratio for cooperation is

b " Numcp
¢), Dencp’

Numcp = (2+€)(=1+ N + 3) {78 + 4N*(9 + 11e
+2€2) 4 2(17 — 22p)
— 1226 + 24/ 4 €(83 — 1253 + 225?%)

+N [—114+683+5€*(—5 + 28)+e(—127 + 748)] } ,
(13)

(b>* B 3at + 1903 + 41a? + 35a + 10
€J LIN—+oo

(12)

where

and

Dencr = —57 + N3(9 + 25¢ 4 34€* + 6¢°)

+ 1578 — 15532 + 1583 + €3(—12

+ 298 — 226%) 4 €2(—76 4 2018 — 1778% + 2253%)

+ €(—109 + 2948 — 27367 + 283%)

+ N? [25(—3 + B) + 48¢*(—3 + 28)

+2€% (=12 + 78) + 3¢(—53 + 263)] + N [123 — 18283
+ 476%4+€%(30—438 + 105%) + 3¢%(62 — 998 + 324%)
+ 3¢(81 — 12453 + 358%)] . (14)

b) if N > 7, there exists a positive benefit-to-cost threshold
for the system to favor cooperation regardless of € and (3,
and the system never favors spite,

¢) with N — +o0, the limit condition for cooperation is
independent of S as follows

15)

<b)* _ 8€® + 60€? 4 124€ + 72
C

LN 400 6€3 + 34€2 +25¢+9

We present the detailed discussion of the proof'in Appendix E.
There are two system sizes not included in Theorem 4
(b), which are N =3 and N = 5. In these two cases, the
evolutionary dynamics can favor the evolution of spite instead
of cooperation, depending on the ranges of ¢ and /3. Based
on (12), we can directly analyze these two cases. For N = 3,
the boundary point for e (denoted as €j_5) is the third
root of 3€®+13¢> —17¢ — 15 =0 (e€iy_5 ~ 1.53), if we
arrange the roots from small to large. If 0 < e < €y_5, the
system can favor cooperation if 3 > Sy_s, where By _j
is the third root of (22¢? + 28¢ + 15)3% + (8¢3 + 11162 +
42¢ — 14) 8% + (266 + 174€2 — 120e — 164)3 + 24¢® +
104€? — 136e — 120 = 0. If € = €n—s> 3 >0 can make the
system favor the fixation of cooperation. If € > ey _s, the
system is possible to favor cooperation if 5 > 0. For N = 5,
the boundary point for € (denoted as €;_5) is the third root of
9e3 +47¢> + 8¢ — 6 = 0 (€y_3 ~ 0.277). If 0 < € < €5, 3
has to be greater than the third root of (22¢? + 28¢ + 15)3% +
(28€3 4 303€% + 252¢ + 80) 8% + (164€> + 1116€? + 384¢ —
128)3 + 2883 + 1504€? + 2566 — 192 =0. If e=€y_;
and 3 >0, or € >€y_5 and B >0, the system can favor
cooperation instead of defection.

This ends our analysis of the condition for cooperation in
particular graph families. In Theorem 1, we show that the
self-interaction learning strategy can reduce the condition for
cooperation in sparse regular graphs. In dense regular graphs,
the self-interaction can save the system from the evolution of
spite. In Theorems 2-4, we show that in the star topology
and the modified stars, as the increase of system sizes, the
self-interaction of leaf vertices becomes crucial in the fixation
of cooperation.
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Fig. 1. Critical thresholds for cooperation in sparse and dense regular
graphs with self-interaction. (a) For sparse regular graphs with N > 2k
cooperation can always be favored. The network parameters are (N, k) €
{(50,2), (100, 2), (50, 3), (100, 8)}. (b) For sense regular graphs with N' <
2k spite is always favored to win over cooperation. The network parameters are
(N, k) € [(50,30), (100, 60), (50, 40), (100, 80)]. Each transition point of
£(k) from spite to cooperation is marked with arrows by the corresponding color
of the legend. (c) and (d) Phase diagrams of cooperation and spite with N = 50
and N = 70, respectively. The yellow and blue areas indicate cooperation and
spite respectively.

V. SIMULATIONS AND ANALYSIS
In this section, we perform simulations of the evolutionary
dynamics to verify and further analyze the effects of self-loop
learning in networked systems.

A. Methods

We perform our simulation in regular networks, stars, hub-hub
joined stars, ceiling fans, several types of random networks, and
real networks. We design the self-interaction landscape £ in
two aspects. For regular networks, random networks, and real
networks, we design continuous functions that are related to the
network degree, including (k +1)~1, e7*, Ink, and 1 — k7!,
e.g., U;(k;) = Ink; is the self-interaction strength of the agent i
if we consider the third function. For stars, hub-hub joined stars,
and ceiling fans, we directly assign real numbers as the self-
interaction strength of each agent. For the game parameters, we
fix the cost ¢ = 1. For the simulations of fixation probabilities,
we show N x (pc — pp) instead of pc for more convincing
results, as pc > pp indicates the advantage of cooperation.
The fitting lines of fixation probabilities are obtained by linear
regression. All following simulations are carried out by Python
3.9 based on the networkx package.

B. Regular Networks

We first consider the regular network family, where each agent
has the same degree k. The condition for cooperation without
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self-interactionis (N — 2)/(N/k — 2) in unweighted networks.
The boundary point for the sparse and dense structureis N = 2k.
Therefore, in Fig. 1, we show the critical condition (%)*ﬁ that
we have mentioned in Theorem 1 in sparse and dense regular
networks as the increase of ¢(k). In Fig. 1(a), we present the
critical threshold in sparse regular networks with NV > 2k, where
the evolutionary dynamics always favor cooperation. In Theo-
rem 1(b), we show that the critical condition for cooperation can
be reduced by self-interaction if £ > 2. In our examples, we can
see that when k = 3 or k = 8, any self-interaction strength can
reduce the condition for cooperation compared to the baseline
(¢(k) = 0). However, if k = 2, the cooperation condition first
increases and then decreases as the growth of £(k), i.e., regular
graphs with k£ = 2 may not benefit from the self-interaction.

In Fig. 1(b), we further discuss the dense regular graph with
N < 2k. The evolutionary dynamics can favor cooperation with
sufficiently large ¢(k), while the evolution of spite is favored if
£(k) is small. Therefore, in dense regular graphs, appropriately
large self-interaction strength can save the system from spite and
lead to cooperation. The quantitative condition for the transition
is given in Theorem 1(c) as (3). In Fig. 1(b), we also mark this
condition with arrows with the same colors as the curves.

In Fig. 1(c)—(d), we further show two phase diagrams with
N =50 and N =70 to give examples of the phase transi-
tion from spite to cooperation. Evidently, the curves separat-
ing cooperation and spite areas are linear, as demonstrated in
Theorem 1(c) and (3). With an increase in the degree of the
network, we find that the self-interaction strength should also
be enlarged to guarantee the favor of cooperation. However, if
the network degree is smaller than N/2, cooperation can be
favored regardless of the strength of self-interaction.

We present three regular graphs to show the fixation probabil-
ity, including the hexagonal lattice with k = 3, the square lattice
with k£ = 4, and the triangular lattice with k£ = 6, each of which
has periodic boundary conditions. In Fig. 2(a), we illustrate the
structures of these three lattices. In Fig. 2(b)—(c), we show the
results of N(pc — pp) with several self-interaction functions.
The vertical colored lines indicate the theoretical results in (2),
and the grey arrows present the threshold condition without
self-interaction. Apparently, the critical condition for cooper-
ation is reduced for all four self-interaction strength functions,
among which ¢(k) = Ink is the most helpful for the fixation
of cooperation. Additionally, £(k) = e~* results in the weakest
positive consequence due to self-interaction. In this case, a vertex
holds its origin strategy with a very small probability, hence the
reduction of cooperation condition is the smallest.

C. Stars

In the following we check the case of star topology. If we do
not consider self-loops, the star system cannot favor cooperation
for all benefit-to-cost ratios [67]. Theorem 2 shows that proper
self-interaction strength in stars can promote the fixation of
cooperation. In Fig. 3, we discuss the effects of self-loops of
stars in two extreme cases, including o = O and 8 = 0. Fig. 3(a)
shows the case that & = 0, i.e., there is no self-interaction among
leaves. As a result, the evolution selection always favors spite,
and cooperation cannot be favored, according to Theorem 2(b).
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Fig. 2. Fixation probabilities and conditions for cooperation in lattices with
specific self-interaction function. (a) Topology structures of the hexagonal lattice
(k = 3), the square lattice (k = 4), and the triangular lattice (kK = 6). The
periodic boundaries are not shown here but are considered in the simulations.
(b)-(d) Fixation probabilities N x (pc — pp) as the increase of b/c and the
variation of self-loop strength functions. Here we expand po — pp by N
times to unify the scale of the vertical axis. The system sizes for (b), (c),
and (d) are 72, 100, and 98 respectively. Each data point marks the ratio of
cooperation fixation over 2 x 108 independent runs, fitted by linear regression.
The vertical lines indicate the theoretical results presented as (2). The grey arrow
in each panel is the condition for cooperation without self-interaction, which is
(N —2)/(N/k - 2).

The critical condition decreases with the increase of system size
N, indicating that an agent only needs to pay a small cost to
bring tremendous damage to its neighbors. However, as shown
in Fig. 3(b), the self-loops of leaves can promote cooperation.
A slight self-interaction strength among leaves can reduce the
cooperation condition to a single-digit number, as shown in
Theorem 2(c).

In Fig. 3(c)—(d), we further present the phase diagrams for
N =15 and N = 25 in stars by setting coordinate axes as o
and (. These phase diagrams also show that the self-interaction
of the hub vertex is not beneficial for the fixation of cooperation.
However, a star only needs a small self-interaction strength of
leaves to maintain the possibility of cooperation, even if the
hub vertex’s self-interaction strength is large. Summing up, self-
interaction of the leader (hub agent) is detrimental, while the
same used for the majority (for leaves) could be helpful.

We further present the fixation probabilities in stars with self-
interaction. In Fig. 4(a), we illustrate the typical star topology
where leaves are connected only to a central hub. In Fig. 4(b),
we show the fixation probabilities for four groups of parameters,
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Fig. 3. Evolution of cooperation and spite in stars with self-interaction. o
and [ denotes the self-interaction strength of hub and leaves, respectively. (a)
Self-interaction only applies to the hub vertex, i.e., o = 0. The evolution of spite
is always favored in this case, which is harmful to the system. (b) Self-interaction
only applies to the leaf vertices, i.e., 5 = 0. The system can always favor the
evolution of cooperation. The sizes of stars are N € {5,7,9,11} as indicated
in the legend. (c) and (d) Phase diagrams of the cooperation (yellow) and spite
(blue) with N = 15 and N = 25, respectively.
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Fig. 4. Fixation probabilities and conditions for cooperation in stars. (a) An
example of a star. The hub vertex has the greatest degree N — 1, while each
leaf has the degree 1. (b) The fixation probability for different self-interaction
strength of hub and leaves (e, f) € {(1.0,2.0),(0.5,2.0),(0.5,0.0),
(0.4,1.0) }. The systemsize is N = 10. The vertical lines present the theoretical
results in (4). The condition for cooperation without self-interaction is co. Each
data point is the ratio of cooperation fixation in 2 x 10 independent runs.

including a special case that g = 0, i.e., the self-interaction
only applies to the leaves. We can see that the increase in
self-interaction among leaves often reduces the condition for
cooperation and magnifies the fixation probability of coopera-
tion. We also show that self-interaction for hub could also be
useful if it is attached with the self-interaction of leaves.
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(b) The self-interaction only applies to the leaf vertices with v = 0. The system
sizes are N € {5,7,9, 11}. The hub-hub joined stars always favor cooperation
and never favor spite. (c) and (d) Heatmaps of cooperation conditions with
N =15 and N = 25, respectively. The red area indicates that the requested
condition of cooperation is higher.

D. Hub-Hub Joined Stars

Next, we focus on the stars that are joined by hubs. When
self-interaction is not considered, a graph of two stars joined
by their hubs is an advantageous structure for the fixation of
cooperation. In Fig. 5(a) and (b), we show the critical condition
for cooperation with & = 0 and v = 0 respectively. Though the
cooperation condition is always positive as Theorem 3(b) shows,
the self-interaction strength does not always promote the fixation
of cooperation like for regular graphs. If the self-interaction
only applies to both hub vertices, the cooperation condition first
increases and then decreases as we grow ~y. For a large system
size N, we note that the maximal critical threshold is smaller
as the increase of ~, but it also takes a larger v to make the
condition smaller than the baseline without self-interaction. The
reverse applies for a smaller IV, that the maximal condition is
much higher, but it takes a smaller 7 to reduce the condition
for cooperation. The observed crossover in Fig. 5(a) suggests
that larger population sizes tend to exhibit reduced sensitivity
to variations in the self-interaction strength of hub vertices.
Intuitively, this is because, as the number of vertices increases,
the relative influence or weight of the hub strategies diminishes,
i.e., the growing number of leaf nodes plays a more dominant
role in shaping the strategic evolution within the network. From a
theoretical perspective, this crossover arises from a combination
of factors: specifically, a reduction in the two-step expected
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Fig. 6. Fixation probabilities and conditions for cooperation in hub-hub
joined stars. (a) An example of hub-hub joined stars. The hub vertex of
each star panel is connected via a link, shown by green solid line. (b)
The fixation probability for different self-interaction parameters (c,7) €
{(1.0,2.0), (0.5, 3.0), (1.0,4.0), (0.3,0.0) }. The system size is 2N = 20,
where each star panel has N = 10 vertices. The vertical lines present the
theoretical results of (8). The grey arrow indicates the cooperation condition
without self-interaction. Each data point is averaged over 2 x 10° independent
runs.

coalescence time and an increase in the three-step expected
coalescence time. When a random walker starts at a hub vertex,
a larger network offers more potential paths for the next step,
even under the same level of self-interaction strength at the hub.

In Fig. 5(c)—(d), we further show the heatmaps of the co-
operation condition given N = 15 and N = 25, respectively.
Evidently, the cooperation condition is more sensitive to the
change of a. With the growth of the self-interaction strength
for leaves «, there is a significant reduction of the cooperation
condition, resulting in a more easily achievable cooperation.

In Fig. 6, we present an additional simulation on the fixation
probability of the hub-hub joined star with self-interaction.
Fig. 6(a) shows an example of a hub-hub joined star, where
an edge is added between the hubs of separate stars. In Fig. 6(b),
we present the exact evolutionary fixation probabilities. The
promotion of cooperation is guaranteed by the joint effect of
« and . However, unilateral changes of leaves or hubs makes
difficult to promote cooperation.

E. Ceiling Fans

A ceiling fan topology guarantees that every leaf can share
information with another leaf. In Fig. 7(a) and (b), we show
the condition for cooperation with N > 7withe = Oand 5 =0
respectively. We can see that the cooperation condition is pos-
itive and cooperation can always be favored in both cases.
Additionally, for ¢ = 0, when self-interaction only applies to the
hub vertex, the cooperation condition is reduced by increasing
self-interaction strength, and the same is valid for § = 0. We
have specified two exceptional cases where the selection may
favor the evolution of spite, including N =3 and N = 5. In
Fig. 7(c) and (d), we further discuss these two cases with special
curvesat 5 = 0. These results show that e and S jointly decide the
phase transition point from the evolution of spite to cooperation.
However, as discussed previously, we can still find the critical
point for a permanently positive cooperation condition. For the
case N = 3in Fig. 7(c), it shows that e should be greater than the
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Fig.7. Evolution of cooperation and spite in ceiling fans with self-interaction.
e and B are the self-interaction strength for leaves and hubs, respectively. (a)
The self-interaction only applies to the hub vertex, where ¢ = 0. (b) The self-
interaction only applies to the leave vertices, where 3 = 0. The selection always
favors the evolution of cooperation if N > 7. The system sizes are set as N €
{7,9,11,13}.(c) The exceptional case N = 3.(d) The exceptional case N = 5.
In these two cases, the evolution of spite can be favored. The lines of borders
in panel (c) and (d) present the transition from spite (blue area) to cooperation
(yellow area). There is minimal leaf self-interaction strength for the network
to favor cooperation regardless of the system size /N and hub self-interaction
strength 3.

third root of 3e3 + 13¢2 — 17¢ — 15 = 0 (approximately 1.53)
for cooperation regardless of 3. For the case N = 5, in Fig. 7(d),
the threshold of ¢ is at the third root of 9¢® + 47¢? + 8¢ — 6 = ()
(approximately 0.277), providing more space for the favor of
cooperation. If € is greater than these critical points, the evolu-
tionary dynamics can always favor cooperation, and there always
exists a positive cooperation condition.

In Fig. 7(c)—(d), we further present the phase diagrams for
the two cases N = 3 and N = 5. We find that the theoretical
thresholds of € for the favor of cooperation are consistent with
the computational ones. € > 1.53 and € > 0.277 is the condition
for the system to avoid the possibility of spite. Therefore, we can
conclude that the favor of cooperation in a ceiling fan is easily
achieved.

In Fig. 8, we further show the fixation probabilities and the
condition for cooperation with several self-interaction parameter
groups. Fig. 8(a) shows an example of a ceiling fan. Each leaf
vertex has two neighbors, including one hub and another leaf
vertex. To fulfill this criterion the system size should only be
odd number. In Fig. 8(b), we show the fixation probabilities
with four groups of parameters in a ceiling fan with N = 15
vertices. Compared to the condition without self-interaction, we
find that a slight self-interaction strength can significantly reduce

0.04 £=1.0,=2.0
~ L : £=05,8=1.0

—0.04

(a) The Ceiling Fan (b) Fixation Probability

Fig. 8.  Fixation probabilities and conditions for cooperation in ceiling fans.
(a) An example of the ceiling fan. Each leaf is connected to only one other
leaf, and the additional connections are shown in green lines. The system size
should be odd. (b) The fixation probability for different self-interaction param-
eters (o, ) € {(1.0,2.0),(0.5,1.0), (0.2,1.0), (1.5,4.0)}. The system size
is N = 15. The vertical lines are the theoretical results in (12). The grey arrow
indicates the cooperation condition without self-interaction. Each data point is
obtained by calculating the ratio of cooperation fixation in 2 x 106 independent
realizations.

the condition for cooperation. With the increase of € and 3 the
cooperation becomes easy to achieve. Therefore, the ceiling fan
is an effective modified star topology for the selection to favor
cooperation.

F. Random Networks

In this section we consider random networks that are gener-
ated by algorithms to capture some typical nature of empirical
network topologies. Here, we compare the cooperation condi-
tions before and after the consideration of self-interaction. We
consider six random network models: (1) Barabasi-Albert net-
work (BAN) [68], each new agent connects to m existing vertices
with the probability proportional to degrees, (2) Erd6s-Rényi
network (ERN) [69], an agent has the probability p to connect ev-
ery other agent, (3) Holme-Kim network (HKN) [70], based on
the BAN, an additional edge is added between the new vertex and
a randomly chosen second-order neighbor of the focal new ver-
tex, (4) Duplication-Divergence network (DDN) [71], a random
agent is duplicated, and the replica connects to the neighbors of
the protoplast with the retention probability p, (5) Watts-Strogatz
network (WSN) [72], each vertex has the rewiring probability
p in the nearest neighbor coupled network with the degree £,
(6) Newman-Watts network (NWN) [73], each edge is added
between two randomly selected vertices in the nearest neighbor
coupled network with the degree k. We stress that a WSN should
be connected, otherwise, the condition for cooperation is oco.
Here we also consider the structure coefficient theory [74]. We
denote the structure coefficients before and after self-interaction
as o and o, respectively. In a donation game, this theory
suggests that cooperation is favored if (b —c)o — ¢ > b, ie.,
o = [(4) +1/[() — 1] and o = [(2)5 + 1]/[()z — 1. In
Fig. 9(d), we show the comparison between ¢ and o .

In Fig. 9, we show cooperation conditions in the mentioned
six random network models and compare them before and after
the consideration of self-interaction. In Fig. 9(a), we find that
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(m)-(p) (1+ k)’l. The considered networks are BAN, ERN, HKN, DDN, WSN, and NWN. We compare the cooperation conditions before and after the
consideration of self-interaction in (a), (e), (i), and (m). In (b)(f)(j)(n) and (c)(g)(k)(0) we compare the cooperation condition with self-interaction with the mean
degree (k) and the mean degree of neighbors (ky,, ), respectively. In (d)(h)(1)(p) we compare the structure coefficient before and after self-interaction. Each panel
has over 1.25 x 10° data points that present the critical cooperation conditions. The red solid line indicates when values of vertical and horizontal axes are equal.
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Fig. 10.  Fixation probabilities in real-world network data sets. (a) Dolphin network with N = 62. (b) American football network with N = 115. (c) Contiguous

border network of USA with N = 49. (d) Retweet hashtag network with N = 96. (e) Sandi collaboration network with N = 86. (f) Social Karate club network
with N = 34. (g) Mesohaline trophic network of organisms carbon change in Chesapeake with N = 39. (h) Iceland network with N = 75. The vertical lines
present the cooperation condition in specific self-interaction functions. The grey arrows denote the cooperation condition without self-interaction. Each data point

is the ratio of cooperation fixation in 10® independent runs.

the usage of self-interaction function e~* makes difficult to
promote cooperation. The critical conditions almost remain the
same value obtained without self-interaction. This is because the
self-interaction strength is extremely small in large-degree net-
works, e.g., for an agent with degree k = 10, the self-interaction
strength is only e 10 ~ 4.5 x 1075, which hardly changes the
strategy selection process. Additionally, for a network with a
small degree, the condition for cooperation is already small
without self-interaction. Therefore, e * is not an ideal self-
interaction function for networked systems. Fig. 9(b)—(c) com-
pare the cooperation condition to (k) and (k. ), which show
the necessary conditions in regular [18] and heterogeneous
graphs [19] respectively. For e=*, we still need b/c > k con-
dition to reach cooperation.

If the self-interaction function is In k, the cooperation con-
dition can be significantly reduced. As shown in Fig. 9(e), In k
often helps the system to reduce the condition exponentially.
agents only need to pay a quite small cost to achieve coopera-
tion compared to the case without self-interaction. In Fig. 9(f)
and (g), we also compare the cooperation condition with (k)
and (k). Our results suggest that self-interaction of In & can
considerably reduce the cooperation condition for networks with
k > 5. The conditions can be smaller than both (k) and (k).
Regarding 1 — k=% and (k + 1)~! in Fig. 9(i)~(k) and (m)—(0),
we find that the cooperation conditions are reduced as well, but
not as significant as In k. The effect of self-interaction strength
with 1 — k! can also lead the system to a cooperation condition

smaller than the mean degree, but the same is not true with
(k+ 1)‘1. For Ink and 1 — k1, we can see that some data
points are above the red lines, indicating small degree networks.
In this case, the self-interaction may be counterproductive.

In Fig. 9(d), (h), (1), and (p), we find that if a self-interaction
strength can significantly reduce the cooperation conditions, the
structure coefficients are mostly increased after self-interaction,
e.g., Ink and 1 — k~'. However, if the original o is large,
the self-interaction is reduced after considering self-interaction,
e.g., when o = 3, where the majority is HKN.

G. Real-World Networks

To check the robustness of our observations, we further
explore the effect of self-interaction on the fixation of coop-
eration in four real-world network data sets. We first briefly
introduce these networks: (a) the social association network
of bottlenose dolphins with N = 62 vertices and (k) =5 in
New Zealand [75], (b) the network of American football games
between Division IA colleges with N = 115 vertices with
(k) = 10.66 [76], (c) the USA border connection network of
every two states with N = 49 vertices and (k) = 4 [77], and (d)
the retweet network from various social and political hashtag
with N = 96 vertices and (k) = 2 [78]. (e) the Sandi authors
network with N = 86 vertices and (k) = 2 [79]. (f) Zachary
karate club network with N = 34 vertices and (k) = 4.59 [80].
(g) the mesohaline trophic network of Chesapeake Bay with
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N =39 and (k) = 8.72 [81]. (h) the sexual contacts of male
homosexuals in Iceland with N =75 and (k) = 3.04 [82].
These network data sets can be found in [79].

As shown in Fig. 10, we apply the mentioned four self-
interaction strength functions. In a network with relatively high
average connections, the self-interaction is weak and tends to
zero if we consider e *. We can see that e =" hardly influences the
cooperation condition in Fig. 10(a)—(c) and (e)—(g), but increases
the condition in Fig. 10(d). Additionally, in Fig. 10(a)—(c), the
cooperation conditions are significantly reduced for In &k and
1—Fk %, and (k+ 1)~! is also slightly helpful in promoting
the cooperation. However, for the retweet, Sandi collaboration
network, and Iceland networks, the self-interaction may not be
effective in reducing the cooperation conditions. The reason may
be the small average degree (k) = 2 and 3. Our previous finding
in Theorem 1(b) for the regular graph family is very similar to
this phenomenon. In a small degree case, the self-interaction
does not always reduce the cooperation condition.

VI. CONCLUSIONS AND OUTLOOKS

We study an evolutionary donation game model with self-
interaction learning in networked systems. We define a self-
interaction landscape to describe the strength of the strategy
self-replacement. We identify the condition for cooperation in
several specific graph families, including regular graphs, stars,
hub-hub joined stars, and ceiling fans. Additionally, we further
present the condition of self-interaction strength that makes
cooperation possible to overcome the evolution of spite. Our
simulation results further show that with a proper self-interaction
landscape, the condition for cooperation can be significantly re-
duced even with small weights of self-interaction, especially for
the large-degree systems that are arduous to achieve cooperation.

Although our results suggest that self-interaction shows fun-
damental advantages in promoting cooperation, there are still
some vital issues to address. (i) The self-interaction can re-
duce the condition for cooperation and save the system from
the evolution of spite. However, it also increases the average
fixation time, because a mutant as well as its neighbor is very
likely to maintain the original strategies, especially a large
self-interaction strength. How to balance the strong cooperation
and the long-range fixation time beyond Moran process [83] is a
crucial problem. A mathematical method is needed to determine
the appropriate marginal slowdown. (ii) Self-interaction is es-
sentially adding self-loops to the network structure. Is there any
strategy to modify the network structure in a more general way,
so that the cooperation condition can be reduced, with minimal
modification? (iii) What type of self-interaction can reduce
the cooperation condition of an arbitrary but fixed networked
system?

The problem discussed here can also be further studied from
the following perspectives. One can consider the self-interaction
in different interaction and replacement graphs. The structure of
the game interaction for acquiring payoff and fitness is differ-
ent from the structure of strategy replacement or update. The
effect of self-interaction in higher-order networks and temporal
networks could also be a challenge. The effects of interaction

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 13, 2026

among modular subnetworks on the evolution of cooperation
are a promising direction to study evolutionary dynamics [84].
The question of how to achieve targeted cooperation control in
a networked system is also challenging [85].

APPENDIX A
PROOF FOR LEMMA 1 AND SOME USEFUL TERMS

We briefly review the proof of Lemma 1 because some tech-
nical terms will be used in the following analysis. We start
by calculating each agent’s payoff. For the mentioned dona-
tion game, the agent i’s payoff is fi(S) = —cs; +b3_; pz(;)sj,

where p(n)

;; 1s the probability of the n-step random walk from i
to j. If the selection strength is 0, the evolutionary game process
degenerates into the neutral drift model as a martingale [54]. In
this case, the fixation probability of the cooperation is 1/N. The
non-zero selection strength then leads to the destabilization of
such a martingale, which can be denoted by
pe = 1 + 8D+ 0() (16)
where (D'} is the first derivative of the degree-weighted coop-
eration frequency change rate. Substituting each agent’s fitness
using Taylor’s formula F;(S) = exp[0fi(S)] =1+ fi(S) +
O(6?) into (D'), with the weak selection assumption, we have

(D) = 53 m [~esi(s® — 52) + bsi(s — 5]
iey
A7)
strategies suggests that (3, ., wisi(s("l) _ 35”2)» = (n(n2) —

2

The spatial assortment condition

(")) /2N, where n(") = Dijey mpE;L)mj, m; denotes the sta-
tionary distribution of a random walk in G, and 7;; is the
expected coalescence time of ¢ and j that can be calculated by
the following recurrence

1
—0)[L+ = > (pisnjn +pjgmir)l,  (18)

2
key

nij = (1

where 6 is a Kronecker function with 60;; =1 if i=j
and 6;; =0 if i # j. Combining these equations directly
induces (16). |

We can simplify some technical terms for our following anal-
ysis. We define n; = 1 + (3 .oy irnik)/2, via the recurrence

condition based on (18), we have r](”+1) = Ziev Tr,'pl(f)m +
n™ — 1. Lettingn™ — oo, wehave Y, _,, 72n; = 1. The main
notations of this paper are shown in Table I.

APPENDIX B
PROOF FOR THEOREM 1: REGULAR GRAPHS

We first prove (a). In regular graphs, we assume that all
vertices have the same degree and self-interaction strength.
Therefore, the corresponding stationary distribution of a ran-
dom walk is 1/N for all vertices. Accordingly, our previ-
ous discussions suggest that >, m;n; = N. Based on the
recurrence equation, we have n™ =", mn; — 1, n® =

Sieyll + (€(k))/(k + €(k))] = 2, and n®) = 37,0, mmi[1 +
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TABLE I
NOTATIONS
Symbol Definition
n(m) The expected coalescence time of all n-step random walks
pc (pp) The fixation probability of cooperation (defection)
k The degree of a regular network
L(k) The self-loop strength of the vertex with a degree k
o The self-interaction weight of the vertex with degree 1
B The self-interaction weight of the vertex with degree N — 1
o The self-interaction weight of the vertex with degree N
€ The self-interaction weight of the vertex with degree 2
pgy) The probability that a random walk takes n steps from ¢ to j
Nij The expected coalescence time of a random walk from ¢ to j
T The stationary probability of a random walk
S The strategy vector of the network
b The benefit of a donation game
c The cost to donate in a donation game
fi(S) The payoff of the vertex ¢ given the strategy vector S
F;(S) The fitness of the vertex ¢ given the strategy vector S
) The selection strength

(£(k))/(k + €(K)) + (¢*(k) + 1)/ (k + €(K))?] — 3. Substitut-
ing 7, n®, and 7 into Lemma 1, we can directly obtain
the condmon for cooperation to be favored as (2).

Next we prove (b). To explore if self-interaction helps to form
cooperation or not, we can compare (2) to (N —2)/(N/k —
2), which is the critical condition for cooperation without self-
interaction. If the regular graph is sparse enough, we assume that
the self-interaction increases the critical condition. If N > 2k,
this assumption can be indicated and reduced as

_ N-2
N/k—2

k [k + (k)]

N [k? + 3ke(k) + 202(k)] — 2 [k + £(k)]?
N [kL(k) + k + 202(k)] — 2 [k + £(K)]?
>0 <= N{[k+Kk)]* —L(k)k[k+ (k)] —
+ (k) [k + €(K)]}
+ 2{k [k + £*(k)]

—[k+ k)] >0 —=

N [2€(k) + 3k — 2kl(k) — k2] + 2[kl(k) — (k) —2k] >0
<= ((k)(2N — 2kN + 2k — 2) + 3kN — kN — 4k > 0.
19)
This condition can be finally reduced to
E[N(k—3)+4]

Apparently, the right-hand side of inequality is negative if
N > 2 and k > 2, inducing ¢(k) < 0, which is against Def-
inition 1. Therefore, with our mentioned condition, we have
(2)3 < (N —2)/(N/k — 2). For a graph that is sparse enough,
we have k +2¢(k) —1> 0 and (%)} > 1, resulting that the
evolution of spite will never be favored. The self-interaction in
the networked system relaxes instead of increasing the critical
condition for cooperation. This ends our proof.

Last we prove (c). For a dense graph with N < 2k, £ can
enhance cooperation within a certain interval of ¢(k). The nu-
merator of (2) is greater than 0. If the denominator is greater
than O as well, there will be a chance for the system to favor

cooperation, which is

N [kb(k) + Kk + 202 (k)] —2[k +£(k)]* > 0. (1)

Reduce (21) directly leads to Theorem 1(c). [ |

APPENDIX C
PROOF FOR THEOREM 2: STAR GRAPHS

We start from the critical condition for cooperation in (a).
The probabilities for a one-step random walk from a leaf to
itself or the hub are pr;, = o/(1 + ) and pry = 1/(1 + )
respectively, and from a hub to itself or a leaf are pyy =
B/(N —1+p5) and pgr = 1/(N — 1+ [3) respectively. Ac-
cording to the recurrence condition (18), we have the expected
coalescence time between the hub and a leaf as

1
N =1+ i[pHHTIHL + (N = 2)parner + prrnatl,
(22)

and between a leaf and another leaf as n,;, = 1 +prnrr +
prunmr- Here we note that 7, denotes the quantity from a
focal leaf to another arbitrary leaf because the expected coa-
lescence time is O if two ends of the coalescence process are
identical. Solving the system of equations, we find that

(I+a)(Na—2a+26+3N —4)

- , 23
NHL Ntotd (23)
and
Na? +5Na — a? +3aB + 4N — 5a + 38 — 4
L = N+a+p
24
Therefore, we have
ng =1+ (N —Dpurnur
14 (N-1)(1+a)(Na—2a+258+3N —4)
- (N=1+4B)(N+a+p) ’
(25)
and
Na+4N —a+ 358 —4
N =1+pLuny = p (26)

N+a+p

The state space of a random walk in a star topology can be
divided into two categories, including the leaves and the hub,
where each leaf has an equivalent stationary distribution. The
stationary probability for a random walk in the hub is 7y =
(N—14+p8)/2N+ Na—2—a«a+ ), and in a leaf is 7, =
(1+a)/(2N + Na—2 — a+ ). Thereare N — 1leaves and
1 hub in the star, therefore the critical condition for cooperation
is

9 *
¢/)r
(N —=Dmrnr(L+prr) +mana (L +prm) — 2

(N —Drpnr(prr -HU( )) + mana(PaE +pg3q) —2
27
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where pfz = pip +pLapnr and pg)H = phy + (N -

Dpurpru. We can reduce (27) to directly obtain (4).

Now we consider the effect of the hub self-interaction and the
leaf self-interaction, denoted by o = 0 or 8 = 0 respectively.
We first prove (b) with @ = 0 and only the hub vertex undergoes
the self-interaction. In this case, the condition for cooperation is

()
¢ Lla=0

4

3 8 4 14
2(N-1+6)[—3+3N3+36—352
16 4., 2320
v (- 2) et -2 D]
B<N3+N2 (;ﬂ+2) +N(;61) +B)

(28)

Apparently, (28) is always negative if N > 2, o > 0, and
B > 0. Therefore, if the self-interaction only works for the hub
vertex, the system always favors the evolution of spite instead of
cooperation. The agents are likely to pay a cost to impair others’
interests. If N — +o00, the limitation of (28) is —oco//3. Due to
our previous demonstration that the self-interaction strength is
finite, this critical condition is —o0.

Then, we focus on the case that only leaves undergo self-
interaction. With 3 = 0, the critical condition is

2 3 3
40 16 47 20
(—4@2 - = ) +N <5a2+a—|—>

§(N - 1)(1+a) {N?’ <a2 + = + 4) +N?

3 3

b\ " 3}

(c)wzo ~ a®(NT—5N%+9N2 — TN +2) + a?(4N*
—20N3 + 36 N2 — 28N + 8) + a(N* — 7N3
+15N% — 13N +4)

(29)

We can find that (29) is always positive if N > 3, meaning that
the selection favors cooperation instead of spite. Seeking the
limit of (29) with N — +o0 directly leads to (7). In fact, this
limitation holds for both o« > 0 and S > 0. [ |

APPENDIX D
PROOF FOR THEOREM 3: HUB-HUB JOINED STAR GRAPHS

In a graph where two stars are joined by hubs, the edge H H is
the bridge between two star panels. We denote p};; = 1/(N +
~v) as the probability that a random walk from a hub agent passes
the bridge to another hub agent. If the walker starts from a leaf
agent, it steps into itself with the probability pr;, = a/(1 + «),
and the hub agent of its located panel with the probability pr g =
1/(1 + «). If the walker starts from a hub agent, it steps into
itself with the probability py g = v/(N + ), and a leaf agent
with the probability prr = 1/(N + ). There are two types
of expected coalescence time quantity in the same panel (ngr,
and n7,7,) and three types in the different panels (97, 77, and
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N7 )> Where ~ marks that the bridge from H to another H
separates two vertices. These five types of expected coalescence
time can be presented in the following system of equations

1
NrL =1+ 5[(]\7 —2)parnLr + (Prr

+puH)NHL + DY L)
N =1+ prLunLe +PLinLL

1
Ngp =1+ 3 PympnaL+ e + PNy (0)

+(N = Vpurnyy + prany)
nrr, =1+pLniy +PLENEL
Nag =1 +paunpy + (N = Vpurnpy

By solving these equations, we find that

(14 a){N?(10 + 9a + 2a?) + (-2 — 22 + 37)
N[5 —3a% + 11y 4 a(-8 + 57)]}
CON2(24+ @)+ NGB+ ) (1 +at+y)+y(2 +2a+7)’
€1V

NeL

2(1+ a){N?(6 + 5a + a?) — N[1 + o?
+a(2 - 3y) — 7] + 29%}
N2(2+a)+ NB+a)(l+a+7)+v(2+2a+7)’
(32)

N3(2+a)? +9%(2+2a+7) + N?*(2+ a)[5 + 3a?
+4v + a(8 +7)] + N[—4 — 4a® + 9y + 572 + o2
(=12 +57) +20(=6 + 77 +°)]

nLL =

THL = N2+ a) + N3+ a)(1+a+y)+7(2 + 2a+7)

(33)

N3(24 a)? + N2(2 4 a)[6 + 302 + 4y + (9 +7)]
+7 (24 20243y + 72 +a(d + 37)) + N[-1 - 3a°
+127 4 5v% + (=7 4 67) + (=5 + 187 + 2+?)]
N2(24+a)+ N3+ a)(1+a+7)+v(2+2a+7)
(34)

44403+ N3(2+ a)? —4a?(=3 +7) — 4y + 7?2
+79% + (12 — 8y +9?) + N2(2+a)[3a? +4(1+7)
+a(7+ )]+ N[-11 — 7a® + 67 + 572 + a?(—25
+47) + (=29 + 107 4 2+?)]
N2(2+a)+ N3+ a)(1+a+y)+7(2 + 2a+7)
(35)

nLL

NHH =

Therefore, we have

na =1+ P+ (N = Dpuengr, =
2{2+20% + N3(2+a)’ = N?(2+ a)[1 +a” + a(2
—~37) = 69] = 0%(=6 +7) — 2(=3+7) — 7+ 7* — N[3
+203 +v — 692+ a2(7T+7) + a(8 + 27y — 37?)]}
(N+)[N2(2+a)+ NBra)(l+tatq)+y(2+2a+7)]
(36)

)

nL =1+ pLunce
_ 2N2(6+5a+a?) — 2N[14+a?+a(2 — 3y) — Ty]+4+?
 N2(24+a)+N@B+a)(l+a+y)+y(2+2a+7v)

(37)
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A random walker can be in a leaf or a hub. The state space
of a random walk can be divided into two categories. The
stationary distribution of a random walker in a leaf or a
hubistyg = (N +7v)/(AN + 2y 4+ 2Na — 2a — 2) and 71, =
(1+a)/(4N + 2y + 2Na — 2 — 2) respectively. There are
2(N — 1) leaf vertices and 2 hub vertices, then we have

(%),

(N —=Dmn(L4+prr) + manag(1+pam) — 1

(N = D (prr +050) + manm (e + play) — 1

(38)

. 2
Here, because two hub vertices are connected, we have p(L 2 =

pig +pupar and  py =py +pacl(N — Dpom +
Py ). Substituting (36), (37), and (38), we can obtain (8) as
presented in (a).

Through the range analysis, it follows immediately that
Numgiargyg > 0 and Dengigrgg > 0 if N > 2. Therefore,
we have (%)2 > 0, and there exists a positive threshold for the
system to favor cooperation as shown in (b). Accordingly, the
evolution of spite is never favored. Letting N — +oo in (8)

directly leads to (c). [ |

APPENDIX E
PROOF FOR THEOREM 4: CEILING FANS

We start by proving (a). We denote o as a mark of the
random walk quantity from a leaf to its adjacent leaf. If a
random walker starts from a leaf, it steps into itself with the
probability pr, = €/(2 + ¢), into the hub with the probability
pra = 1/(2 + €), and into its neighboring leaf with the prob-
ability p7 ; = 1/(2 + ¢€). If a walker starts from a hub, it steps
into itself with the probability py gy = 5/(N — 1 + ) and into
a leaf with the probability pyr, = 1/(N — 1+ /3). We denote
NHL» NLL» N1, as the expected coalescence time between the
hub and a leaf, two nonadjacent leaves, and two adjacent leaves,
respectively. These three quantities satisfy the following system
of equations

1
naL =1+ 5 pranaL + (N = 3)parnLe +pLoiuL

+p5 L + L ;]
nrr = 1 +praner +pronLr + Py LNLL

Ny, =1+ pPLenHL +PLLNTL
(39)

Therefore, we find that

(24 ¢ [-14-5¢4+2N (4 +¢€) +44]

MHL = 442N +3c+23 ;40
22+€)[-5—e+ N(5+¢€) + 3]
4+ 2N +3e+283
2+€e)[-5—€e+ N(B+e) +30]

° = . 42
oL 412N +3c+28 (42)

NLL = ; (41)

Accordingly, we obtain

ng =1+ (N —Lpurnur
24+ 2le + 562+ 2N%2(3+€)2 — 68 — e +2B82 + N
~(—42 —33e — T2 + 126 + 4¢B)
(=1+ N+ 3)(4+ 2N + 3¢ +20) ’
(43)
3(-5—e+ N(B+¢€)+33)

4+ 2N +3e+ 28
(44)

N =1+ pranur + 000 =

There are N — 1 leaves and 1 hub in the system, then we have

(b)* (N =Dmnr(M+prr) + muna (1 + pam) — 2

2ys = )

¢ (N=Dmnr(prr+0C)) +muna (pms + play) — 2
(45)

2 o 2
Here, p(Lg =p3, +0y.° +prupar and quL =phy+

(N — 1)prrpru- The stationary distribution of a random walk
in a ceiling fan with our given self-interaction strength is
g =(N—-1+08)/[3(N—-1)+F+ Ne—e€andry = (2 +
€)/[3(N — 1) + 8 + Ne — €. Then, we can directly obtain the
condition for cooperation as presented in (12).

By analyzing the value range, we can find that the evolutionary
dynamics can favor the evolution of spite if NV =3 or N = 5.
Additionally, if N > 7, (12) is always positive, which results
in our conclusion in (b). Letting N — +o0 directly induces the
conclusion in (¢c). H
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