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Abstract—The environment undergoes perpetual changes that
are influenced by a combination of endogenous and exogenous
factors. Consequently, it exerts a substantial influence on an
individual’s physical and psychological state, directly or indirectly
affecting the evolutionary dynamics of a population described
by a network, which in turn can also alter the environment.
Furthermore, the evolution of strategies, shaped by reputation,
can diverge due to variations in multiple factors. To explore the
potential consequences of the mentioned situations, this paper
studies how game and reputation dynamics alter the evolution
of cooperation. Concretely, game transitions are determined by
individuals’ behaviors and external uncontrollable factors. The
cooperation level of its neighbors reflects individuals’ reputation,
and further, a general fitness function regarding payoff and
reputation is provided. Within the context of the donation
game, we investigate the relevant outcomes associated with
the aforementioned evolutionary process, considering various
topologies for distinct interactions. Additionally, a biased mu-
tation is introduced to gain a deeper insight into the strategy
evolution. We detect a substantial increase in the cooperation level
through intensive simulations, and some important phenomena
are observed, e.g., the unilateral increase of the value of prosocial
behavior has limited promotion in cooperative behavior in
square-lattice networks.

Index Terms—Evolutionary game theory, networked popula-
tions, cooperative behavior, game transitions, reputation, complex
systems.

I. INTRODUCTION

HE emergence and maintenance of cooperative behavior
constitute pivotal concerns within the research on col-
lective behavior, which widely exists in nature and human
societies. Meanwhile, artificial intelligence researchers claim
that it is time to prioritize the development of cooperative in-
telligence, which can promote mutually beneficial joint action
[1]. Nevertheless, the persistence of cooperative behaviors in
the real world and the underlying mechanisms that sustain
them remain an open problem. According to the theory of
natural selection proposed by Darwin, its sustenance seems
impossible [2], which contradicts the wide existence of coop-
erative behavior in nature.
The combination of the spatial topology of individuals
and evolutionary game theory provides a powerful theoretical
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framework to explore and solve the conundrum mentioned
above. The first and most well-known observation was made in
1992 when Nowak and May introduced the prisoner’s dilemma
game into a networked population arranged on a square-lattice
[3]. Subsequently, the emergence of network science including
small-world networks [4] and scale-free networks [5] inspired
intensive research activity toward more complex modelling. As
a result, various networks have been widely applied to address
the problems of collective behavior over the past decades,
including simple networks [6], [7], [8], multilayer networks
[9], [10], temporal networks [11], [12], [13], and higher-order
networks [14], [15]. These generalized network frameworks
provide the groundwork for investigations into other network
dynamics, e.g., the propagation of epidemics [16] and opinions
[17], making them no longer limited to traditional pairwise and
static interactions.

Correspondingly, in recent decades, there has been a surge
of theoretical research focusing on the evolutionary origins of
cooperation and the dynamics underlying its propagation. In
parallel, Nowak has named five key mechanisms to explain
the underlying factors behind this enigma [18]. Among the
mechanisms that have been widely discussed in the context of
promoting cooperation, spatial structure not only stands out as
a prominent perspective from the field of evolutionary game
theory, but also plays a significant role in neutral evolution
due to its asymmetry [19]. Not long afterward, Ohtsuki et al.
provided a simple but intuitive rule, i.e., b/c > k (the ratio
of the benefit b from cooperation to its corresponding cost
c exceeding the average degree k), for the threshold of the
dominance of cooperative behavior [20]. Notably, Allen and
his colleagues provided a general solution applicable to any
connected network under weak selection [21]. Then, analytical
results have been obtained for multilayer networks [22], tem-
poral networks [23], higher-order networks [24], personalized
strategy updates [25], and self-interaction learning [26].

It is well-established that both endogenous and exogenous
factors and rules contribute to the variability and diversity of
interactions and strategies among competitors, thereby exerting
a substantial impact on evolutionary dynamics. Coevolution-
ary rules, as a typical one, have paved a promising avenue
for addressing social dilemmas and promoting cooperation
[27]. In detail, coevolutionary rules take numerous aspects
into consideration, including the aging of individuals [28],
teaching activity [29], population mobility [30], inhibition and
activation of interactions [31], and other different attributes
[32] and learning strategy of individuals [33], [34], [35], which
allows evolutionary models to describe reality more accurately
and effectively.
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The majority of related studies considered single and fixed
strengths of dilemmas or were limited to one unchanging
game mode in their proposed model. In reality, the situation is
often more complicated, as both intrinsic and extrinsic factors
continually evolve, altering the environments that individuals
encounter over time, which can be validated through human-
related activities [36] and microbial systems [37]. Researchers
have achieved extensive results regarding how the ever-
changing environment affects evolutionary dynamics. Hilbe et
al. introduced the idea that the public resource is dynamic
and influenced by the strategic decisions made by individuals
[38]. They found that cooperation can be remarkably promoted
in this setting. Su ef al. conducted comprehensive research
on game transitions, including local and global transitions,
transitions among n states, and considered the evaluation of
the sensitivity of evolutionary dynamics to initial conditions
via pair approximation and diffusion approximation [39]. Feng
et al. researched transitions among different games, including
prisoner’s dilemma game, snowdrift game, and stag-hunt game
based on a continuous Markov chain, shedding light on how
transitions among different game modes affect evolutionary
dynamics [40]. Different from its positive impact on coopera-
tion, varying environments can also lead to the collapse [41]
and oscillations [42] of cooperation. Hence, how changing
environments affect evolutionary dynamics has become the
most intensively studied research path in evolutionary game
theory.

Meanwhile, reputation serves as a pivotal mechanism foster-
ing cooperation and overcoming social dilemmas in human so-
cieties [43], of which typical examples are image scoring [44],
stern judging, [45], and shunning [46]. Significant progress has
been made in this field: in recent related investigations, Zhang
et al. explored the impact of asymmetric fitness comparison
based on reputation [47]. Furthermore, Feng and his col-
leagues investigated a reputation-driven imitation rule, where
the individual’s own strategy determines whether its reputa-
tion increases [40]. One adaptive adjustment of edge weight
determined by reputation allows the prosperity of cooperative
behavior [48]. Hu et al. proposed a trust game and found that
trust flourishes in networks if the reputation threshold is high
[49]. Second-order reputation was considered and cooperation
can be enhanced with the increase of reputation strength
[50]. Cuesta et al. verified the unique role of reputation in
fostering cooperation through human experiments [51]. In the
latest work, adaptive reputation based on the snowdrift game
promotes cooperation on simplicial complexes [52].

Different from previous works, one of the key goals of
our present model is to explore how the above-mentioned
two mechanisms would affect the outcomes of the evolution
and whether defectors could exploit cooperators utilizing their
reputations in varying environments under certain situations.
Consequently, we here consider the case where the increase
and decrease of the individual’s reputation is reflected and
determined by its neighbors’ behaviors, which can be regarded
as homophily in social networks [53] or neighborhood effects
[54], [55], which encapsulate how human behavioral outcomes
is affected by spatial contexts through interconnected social
and environmental pathways. That is to say, an individual fre-

quently surrounded by cooperative neighbors enjoys a higher
reputation and vice versa. The rules of game transitions are
from two aspects: one depends on individuals’ behavior and
another is subject to exogenous changes, which indicates that
it is independent of the evolutionary dynamics. In previous
studies, researchers predominantly presumed a strategy update
rule that excluded further microscopic influences. However,
the wide existence of microscopic effects, like mutation (also
known as random strategy exploration [56]) and migration,
resulting in uncertainty in strategy selection, has already
received substantial attention [57], [58]. Inspired by these
observations, we introduce a mutation mechanism for some
necessary discussions. Additionally, without losing generality,
we suppose that the mutation can exhibit bias, such that
the probability of transitioning to cooperation or defection is
unequal.

In general, the main contributions of this article are sum-
marized as follows.

1) Based on discrete Markov chains and Geometric Brow-
nian Motion (GBM), we utilize stochastic games to capture
the evolving psychology of individuals and public resources
in real-world scenarios, where the games individuals engage
in change over time. In detail, individuals’ behaviors or the
drift and diffusion coefficient in GBM determine the rules of
game transitions among different states.

2) Considering the wide existence of mutant behavior in
reality, the strategy mutation is introduced for further research
and has studied the consequences of biased mutation on the
emergence of cooperative behavior.

3) Diverse game transition modes are introduced for com-
prehensive and in-depth research, encompassing both deter-
ministic and probabilistic game transitions that arise from both
endogenous and exogenous factors.

The structure of the paper is organized as follows. Section II
introduces the strategy evolution dynamics and a reputation-
driven mechanism with stochastic properties. In Section III,
we illustrate the methods and exhibit our simulation results.
In Section 1V, we conclude our work, give some discussions,
and introduce some future potential perspectives.

II. EVOLUTIONARY GAME IN NETWORKED POPULATIONS
BASED ON STOCHASTIC GAMES AND REPUTATIONS

In this section, we present an innovative evolutionary game
model in structured populations that focuses on game tran-
sitions and the reputations of individuals. Specifically, in
the real world, individuals do not consistently engage in a
single game without any modifications. Instead, they possess
a dynamic mechanism that evolves over time, which can be
linked to their psychology constantly changing. To delineate
this phenomenon, we employ the Markovian framework to
model the game transitions from both continuous and discrete
time, thereby encapsulating the probabilistic nature of state
transitions from one game instance to the next.

A. Game Model

In this paper, we take the evolutionary prisoner’s dilemma
game (PDG) (also known as donation game [59]) into account
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as the framework of our proposed model. For that purpose, we
provide a concise overview of the original PDG model wherein
participants have two optional strategies: cooperation (C') and
defection (D). If two participants achieve mutual cooperation,
both derive the same reward (R); however, they obtain the
same punishment (P) for mutual defection. Moreover, for
two opposite strategies, the unilateral cooperator receives the
sucker’s payoff (S), while the other adopting defection gets
the temptation (7°). In addition, R, P, S and T satisfy the
following conditions in PDG, ie, T > R > P > S
and 2R > T 4 S. According to traditional settings, we
st R =b—-—¢, P =0,5 = —c and T = b, where
b > ¢ > 0. In PDG, D is always the best regardless of the
opponent’s strategy, i.e., (D, D) is the Nash equilibrium in
a well-mixed population. Furthermore, the interaction pattern
is determined by a networked population, in which nodes
represent individuals and edges represent interactions.

B. Stochastic Games

To describe the changeable resources in reality, we utilize
stochastic games to model them. Hence, we denote the state
space E = {Gy,...,Gy,} as all possible (m+ 1) game states
that can be reached during evolution. In the proposed model,
we suppose that different game states correspond to different
strengths of PDG. Therefore, for PDG and the state G;, the
payoff matrix can be expressed as

C D
C(bj—c —c
D ( b0 ) M
in which the benefit parameter b; can vary during an evolution

process.

Concerning the setting of stochastic games, in a natural
way, two different features of game transitions caused by
endogenous and exogenous factors are considered. One is
dependent on the strategy evolution and another is indepen-
dent of the evolutionary process. These include determinis-
tic state-independent and probabilistic behavior-independent
game transitions, of which details are listed as follows:

1) Deterministic ~ State-Independent Game  Transition
(DSIGT): DSIGT indicates that the game to be played is
independent of the previous game and is determined by the
games played and individuals’ behaviors taken in the last
round. In detail, if there is at least one defector in GG, two
individuals will transition to G in the next time step. And
if they want to enter and remain in Gy, they have to adopt
and maintain mutual cooperation. If b; < b;, we say that
G; is “less valuable” than G;. Therefore, without loss of
generality, we take by > b; and analyze a natural transition
structure where only mutual cooperation brings about the
“most valuable” game.

The rule of DSIGT can be described by the transition matrix
P, where | = (s, +s,) € {0,1,2}, by mapping C (resp. D)
to 1 (resp. 0), is the number of C-players between individuals
z and y. Concretely, the elements in PU are either 0 or 1,
i.e., the corresponding transition matrices are

P[O]:[g ﬂ,pm:{g 1}7[)[2]:[1 8] @)

Moreover, in a natural and similar way, we can extend the
above case to even more general cases (e.g., probabilistic ones
and transitions among more than two states), which can be
expressed as

l l
P Pom

pPl=| : - . 3)
pggo p'[rlrlm

Therefore, p[-l]

;; means the probability of transition from state
G; to G; in one time step, given there are ! C-players in
the interaction of two individuals. As shown in Fig. 1(a), the
current game state is GG; and there is one cooperator (the single
blue node, [ = 1), and thus the rule of game transition is
determined by the elements pg}] for j € E in P, That is,
the considered game state will change from G; to G; with
probability pg-]. The difference between G; and G lies in
the payoff difference for mutual cooperation and unilateral
defection (see Eq. 1).

In particular, for the case Pl = PIJ = Pl the game
transition mode can be regarded as exogenous and is not
influenced by strategy evolution.

2) Probabilistic Behavior-Independent Game Transition
(PBIGT): PBIGT means that the game to be played depends
entirely on the previous game. Furthermore, we consider
the continuous time and game state theoretically. Inspired
by Geometric Brownian Motion (GBM), we then have the
following expression of the revised B(t):

B(t) = B(0)exp{(p — %az)t +oWt)}+ By, @)

where W (t), p and o are the standard Brownian Motion, drift
coefficient 1 € R (R denotes all real numbers) and scale
parameter o > 0 respectively. B(0) is the initial value of
GBM B(t) at t = 0 and B; can be regarded as the lower
bound of B’(t), ie., B(t) > Bj.

Fig. 1(b) exhibits the diversity of game states, i.e., for one
individual, its interaction environments with neighbors can
be different. As explicitly shown in Fig. 1(c), different from
Fig. 1(b), the game states of all interactions are uniform at the
same time step, though game states can change over time.

GBM has broad applications in Financial Mathematics,
e.g., the well-known Black-Scholes Model. Therefore, in the
proposed model, it is reasonable for us to utilize the revised
GBM B(t) to model the uncontrollable changing dilemma
strength over time.

C. Reputation Mechanism and Strategy Updating Rule

To better conform to reality, we also take the reputation
characteristics R of the individuals into account. The reputa-
tion of each impacts its fitness directly. Considering the noise
and uncertainty during the process, the updating rule of player
1’s reputation is provided as follows:

Ri(t+1)=Ri(t) + &, n. €{0,1,2,....k;} (5

where &,, follows one probabilistic distribution (e.g., the
normal distribution, &, ~ N(pn,,07 ) or uniform distribu-
tion, &, ~ U(an,,bs,)) indicating the randomness during
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Fig. 1. Illustration of the proposed model. Subplot (a) exhibits the general rule of the game transition. Concretely, the game state starting from G;, given
there is one cooperator, i.e., I = 1 (I indicating the number of cooperators in each pairwise interaction, the formal definition is given in the main text), has
a probability pg to enter G, where JE€E pgl.] = 1 for each G; € E. Subplots (b) and (c) show the game transitions on graphs, where each player has
two strategies to choose from, i.e., cooperation (f)lue) and defection (red), and the edge color indicates the game state. Subplots (b) and (c) exhibit interactive
relationships’ diversity and uniformity, respectively. The diversity indicates that each individual can face different social dilemmas at the same time (depicted
by different colors in (b)). In contrast, the uniformity means all individuals face the same social dilemma at the same time (depicted by the same color in (c)),
and the social dilemma changes as time progresses. Additionally, the dotted circle in subplot (b) indicates the homophily’s effect in the cluster of cooperators.
In each time step, players game with their neighbors and accumulate their payoff from all interactions. The diversity in interactions can manifest distinct game
types, which are accentuated by the different hues of the connecting edges and their corresponding payoff matrices. At the end of each time step, individuals’

strategies update, and then all games and reputations vary according to their corresponding rules.

the update, n. represents the number of cooperators of ¢’s
neighbors at time ¢ and k; denotes the number of i’s neighbors
(also called the degree of node 7). In general, it follows
the cognition that if one individual has more cooperators
around, then it enjoys a higher reputation, and vice versa. This
neighbor-dependent reputation mechanism effectively reflects
the “neighborhood effects”, widely existing in societies.

Each player accumulates its payoff by gaming with its
neighbors, and its fitness is reflected by its payoff and rep-
utation. Since we do not add any limit in the range of R;(t),
we have to implement additional restrictions on the effect
of the reputation on fitness. Therefore, we now need one
function to map R;(t) from R (representing all real numbers)
to (0,a), indicating the target function is bounded as an “S-
shaped” curve. Accordingly, the arctangent function stands as
a preferable candidate for achieving this objective, attributable
to its advantageous characteristics, such as continuous nature
and differentiability, and its wide applications in related works
about reputation mechanisms [60], [61] as well. After some
necessary operations, we arrive at the expression of the fitness
F of i related to its reputation R;(t) and payoff P;(t):

a a
Fi(t) = { Sarctan [Ri(0)] + 5 } - A1), ©)
where a > 0 and P;(¢) is ¢’s accumulated payoff at time ¢
calculated by corresponding payoff matrices following in the
conventional setting.

Concerning the imitation process, different from the ran-
dom choice from neighbors, it is a natural assumption that
individuals are more likely to imitate those whose fitness F' is
higher. Since fitness can be negative, some technical operations
are needed. In detail, the imitated player is selected from
its neighbors proportional to the adjusted fitness F, which is
calculated by

—_ F;— Fy
F=__—J ~mmn 7
’ Fmax_Fmin ()

Then, each possible imitated player will be chosen according
to their adjusted fitness, where the corresponding probability is
proportional to the adjusted fitness. Especially, if all neighbors’
fitness is the same, i.e., Finax = Fmin, then a random one of
them will be chosen. The aforementioned rule indicates that:

(i) The one whose fitness is lowest will not be imitated,
indicating the “survival of the fittest” to some extent.

(ii) Higher fitness leads to a higher probability of being
imitated.

For the updating rule of strategies of individuals, the same
as in most previous studies, we employ the imitation process,
where the Fermi function is applied. Concretely, each individ-
ual has more tendency to imitate its neighbor whose reputation
or payoff is higher. Therefore, the probability of individual x
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learning from the chosen individual y is expressed as follows:

1-94§
= -
L+ exp{[Pu(t) — Py (t)]/r}
)
1+ exp{[Rs(t) = Ry(t)]/k}’
where 0 < § < 1 indicates the strength of reputation.
Concretely, if 6 = 0 (resp. 6 = 1), the updating process is

driven by payoff difference P,(t) — P,(t) (resp. reputation
difference R, (t) — Ry(t)).

P(sy < sy)

®)

D. Rules of Strategy Evolution

A networked population structure can be denoted by an
unweighted and undirected graph G = (V, £), where V and £
are the corresponding vertex set and edge set, with the scale
of N.

Theoretically, in the proposed model, strategy evolution
proceeds as a Markov chain, of which the state is the binary
vector s = (s1,--+,sn) € {C, D}, where C and D denote
cooperation and defection respectively. We assume that the
population undergoes discrete-time updates through replace-
ment events. Concretely and without loss of generality, we
denote (R, /3) as a replacement event, where R C {1,--- , N}
is the set of individuals who tend to update their strategies
and 8: R — {1,---, N} is the mapping between the imitator
and the imitated. For Eq. 8, the state of the population at time
t+ 1, stT! can be described from the current state s? at time
t, i.e.,

Spaiy © € R and with probability P(s; <= sg(;)),

t

B

st = { st i € R and with probability 1 — P(s; SA(i))s

stié¢ R,

©))

where sg(;) is selected from the neighbor set of i according
to relevant rules.

Therefore, the strategy evolution is modeled as an evolu-

tionary Markov chain, of which the transition among different

states is completely determined by the above rules.

III. SIMULATION RESULTS AND DISCUSSIONS

In this section, we will carry out some computer simulations
to exhibit the details and consequences of the proposed model.
To elaborate, we initially showcase the methods employed in
the subsequent simulations.

A. Methods

In this context, we describe the methods used for our
subsequent simulations. For the setting of the payoff matrix in
Eq. 1, as usual, we always set ¢ = 1 by default and vary b; to
describe the dilemma strength and effect of game transitions.
For better presentation of results, we adopt different values
of b; in different simulations, and the actual value is clarified
in each simulation. In this work, unless otherwise stated, we
let « = 4in Eq. 6 and xk = 1 and § = 0.2 in Eq. 8§,
which account for a suitable relation between R;(t) and F;(t),
a payoff-reputation weighted strategy updating rule, and a

moderate selection strength with a certain noise. To reveal
the possible role of the game transition and reputation on
cooperative behavior, we utilize different network topologies.
In particular, we apply square-lattice networks (SL, having
k = 4 degrees with periodic boundary) and Watts—Strogatz
small-world networks (WS, having k = 4 average degrees,
with rewiring probability equal to 0.3) [4]. To facilitate a valid
comparison, the entire network always consists of N = 1600
nodes in each instance, unless otherwise specified. Concerning
the parameters related to the reputation mechanism in Eq. 5,
for the details of the variation of reputation &, , we set
& ~ N(-0.2,0.1), & ~ N(0,0.1), & ~ N(0.1,0.1), and for
n >3, &, ~ N(0.3,0.1) to avoid the excessively rapid and
excessively slow growth in reputation, and the initial value of
reputation is fixed to R(0), making the coefficient in Eq. 6
equals 1. In the initial state, cooperators and defectors are
evenly distributed throughout the entire population, namely,
each individual has an equal probability (50%) to take coop-
eration or defection, and all game states are fixed to GGy for
game transitions among two states. Following the conventional
scenario, we assume that in each round all individuals update
their strategies synchronously, i.e., R = {1,...,N}. The
evolutionary steps for all simulations are fixed at ¢ = 2000,
and the final outcomes for each set of parameters are computed
by averaging over at least 50 independent runs to ensure a high
degree of accuracy in the simulation results.

B. Evolution of Cooperation Frequency over Time

For a population, what concerns people most is the cooper-
ation level, which is usually characterized via the cooperation
frequency f., indicating the ratio of cooperators. Therefore, in
this subsection, we explore how f. varies over time ¢ under
different conditions, and the relevant results are shown in

Fig. 1.
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Fig. 2. Plots of cooperation frequency against evolutionary time. The ranges
of z-axis are set as [0,2000] in both subplots, whereas the ranges of y-axis
in the two subplots are set as [0.2, 1]. For DSIGTs, it is under the parameter
(bo,b1) = (6,3) in two subplots. Others are PBIGTs under o = 10~% and
= 02/ 2 with different initial values. Other parameters are: ¢ = 1, § = 0.2,
a = 4, and By = 4 under SL and By = 3 under WS.

As shown in Figs. 2(a) and 2(b), for DSIGTs in SL and
WS, f. evolves to 1 quickly after a sharp decrease initially,
indicating its effectiveness in the promotion of cooperative be-
haviors. However, that is not the case for PBIGTs. Concretely,
in SL, by varying the initial value B(0), f. does not exhibit
obvious changes, compared to f. in WS. In other words,

Authorized licensed use limited to: Southwest University. Downloaded on November 25,2025 at 02:28:46 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Signal and Information Processing over Networks. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSIPN.2025.3636748

evolution outcomes in SL are insensitive to the initial values of
GBM. The insensitivity observed in SL is partly caused by its
regular topological structure, which eliminates the impact of
the initial values of GBM. Due to the GBM exhibiting a high
degree of randomness could result in significant fluctuations
in the evolution outcomes. Therefore, we make a preliminary
discussion on PBIGT and in the following subsections and
focus on the endogenous game transitions.

Interestingly, if we change the update rule, i.e., Eq. 8
from the difference between two individuals’ payoff to the
difference between two individuals’ fitness, after a period of
evolution, we observe that in WS, there exists a tiny minority
of individuals who adopt unilateral defection for a long time.
They inhibit the whole population from evolving into pure
cooperators, by taking advantage of their high reputation and
payoff (directly leading to high fitness), which leads to another
dilemma, as shown in Fig. 3.

In Fig. 3, the focal individual is a defector and the others are
cooperators. The defector has four neighbors and according to
the rule of DSIGT, the game played by it and its neighbors
is G1, which is less valuable than Gg. Therefore, the payoff
of the focal player is 12, and the second-nearest neighbors
accumulate 24 units of payoff. According to the rule of
imitation, it results in a dilemma, where the nearest neighbors
will never imitate the focal player’s strategy. In other words, it
inhibits the defector from invading the networked population.
On the other hand, the defector also can not be occupied by
surrounding cooperators, of which the probability, calculated
by Eq. 8, is extremely low (especially under strong selection).
However, the population will end up with pure cooperators
after a sufficiently long time for evolution.
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Fig. 3. Illustration of the particular dilemma. The center player is the defector
and the others cooperate. This condition is expected to persist for an extended
period, especially under strong selection. Parameters are the same as DSIGTs
in Fig. 2 during simulations.

In conclusion, it is an interesting phenomenon, indicating
the existence of some particular scenarios where individual
defectors persist throughout a long period in the evolutionary
process. In most cases, though, the timescale of fixation
(absorbing) is not concerned, compared to the fixation itself.

C. Difference between Two Games

In Ref. [39], under birth-death and pairwise-comparison
updating, the condition for pc > pp is Ab > 2¢ (pc and pp
refer to the fixation probability of cooperation and defection
respectively), indicating that the success of cooperation only
depends on the difference between the two games (see Eq. 2

and Figs. 3(B) and 3(D) in [39] for more details). Inspired by
this, in the proposed model, we investigate how the difference
between two games will affect f. in SL and WS. Represen-
tative results of the proposed model here are demonstrated in
Fig. 4.
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Fig. 4. Plots of cooperation frequency against differences between two games.
We set Ab = bg — b1 and values of by in {1.1,2,3,4,5,10} in SL and WS.
The ranges of z-axis are set as [0.8,1.8] and [0.4, 1.6] in subplots (a) and
(b), with steps equal to 0.2, whereas the ranges of y-axis in the two subplots
are set as [0, 1]. Other parameters are: c =1, § = 0.2, k = 1, and a = 4.

As shown in Figs. 4(a) and 4(b), we uncover the rule that
in SL and WS, the whole population evolves into the pure
cooperators for Ab > 1.6 under the condition ¢ = 1. During
the simulations, we find that in some cases, the population
would quickly evolve into a pure state. For instance, for
bp = 1.1 and b; = 2.5 in SL, the population evolves into
pure defectors with a certain probability (about 6%). Tab. I
gives details of the fixation frequency of cooperation and
defection with the increase of simulation times. From this,
we can infer that with the increase of Ab, the fixation times
of cooperation increase. In other words, it is more beneficial
to the success of cooperation. During simulations, when Ab
exceeds a certain value, the whole population will quickly
evolve into one monomorphic strategic state. Moreover, WS
is more sensitive or SL is more robust to the variation of b,
where in SL for b, € {3,4,5}, the results of f. exhibit almost
no apparent distinction among them. The growth rate of f, is
higher for smaller b, especially in SL and WS for Ab from
1.0to 1.2 and 1.2 to 1.4 under b; = 1.1, respectively. Overall,

TABLE I
RESULTS OF THE FREQUENCY OF THE WHOLE POPULATION EVOLVES
INTO PURE STATES

bo by simulations  pure cooperators  pure defectors
25 1.1 1000 938 62

26 1.1 1000 987 13

2.7 1.1 1000 996 4

28 1.1 1000 998 2

we obtain one interesting outcome in SL under reputation and
game dynamics by simulations, where the unilateral increase
of b; has a limited effect on promoting cooperation. Moreover,
the success of cooperation depends on the Ab, instead of the
exact value in two donation games. The results indicate that
game transition imposes a powerful and positive influence on
the evolution of cooperation.
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D. Evolution under Different Noise levels

In this section, we remove the restrictions on the noise
parameter x = 1 to explore how the evolution of cooperation
is affected by noise strengths. In the following numerical
analysis, we set three values of k, i.e., Kk = 3, Kk = 5, Kk = 10,
and corresponding results are exhibited in Fig. 5.
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Fig. 5. Plots of cooperation frequency under different noise values . The
ranges of z-axis are set as [0.6,1.1] and [0.3,0.9] in subplots (a) and (b),
with steps equal to 0.1, whereas the ranges of y-axis in two subplots are set
as [0.0, 1.0]. bo is fixed as 3 in both subplots. Other parameters are: ¢ = 1,
0=0.2,a=4,and by = 2.

According to Fig. 5 (SL in Fig. 5(a) and WS in Fig. 5(b)),
we can observe that under larger noise &, it is more beneficial
for the evolution of cooperation, especially in SL. This finding
indicates that « plays a positive role in promoting cooperation.
It also verifies the robustness of our model.

E. Sensitivity to Initial Condition of Game State

In previous computer simulations, we always assumed that
each evolution starts from all states equal to G;. It is a
natural question to check whether the evolutionary outcome is
sensitive to the initial distribution of the game state. Therefore,
in this subsection, we explore whether and how the initial
condition affects f., and relevant results are shown in Fig. 6.

different initial conditions. Moreover, in SL, there is a linear
relationship, to some extent, between f. and by, for b; varying
from 3.7 to 3.95.

Unfortunately, it is almost impossible to conclude that the
evolutionary outcome is insensitive to the initial condition
from either computational simulations or a theoretical perspec-
tive in the proposed model, due to the existence of the unique
case below. Now we suppose that P(*) has the following form

plo) _ B (1)] Pl = [(1) ﬂ Pl — B ‘1)] (10)

It indicates that the game pattern is fixed and remains the
same as the initial state, degenerating into the conventional
game mode. Therefore, the outcome of evolution depends on
the initial fraction of Gy and Gy, where GG is more valuable
than GG; under the previous assumption. The above description
naturally brings to mind the mechanism, related to “social
ties”, named “edge diversity” (each type of edge representing a
specific relationship between two connected individuals) [62]
and connects it to the present case described by Eq. 10.

It is worth noting that for evolutionary dynamics with
pure game transitions, the answer is clear [39]. That is, for
game transition matrices in Eq. 3, the evolutionary outcome
is insensitive to the initial condition, but that is not the case
for others, e.g., that in Eq. 10. Furthermore, in the supporting
material of Ref. [39], the authors have provided one effective
approach to predict the sensitivity of results.

E. Reputation Distribution of Whole Networked Population

In the proposed model, we display that the reputation
accrues over time. Therefore, after some time of evolution,
the statistical properties (e.g., the mean and variance) and dis-
tribution of the system’s reputation intrigue us. The resulting
reputation distributions, obtained after 2000 steps, are shown
in Fig. 7 for different network topologies.

» O S O
1.0 < o & 1.0 _® ® ¥ @
02 L 4
0.9 0.2,0.8] 0.9
P (06,04
08 @ Dsoz 08 g < 0]
= 1,0 || = & 0.2,0.8
F | v (02,08
0.7 i; e 0.7 P [0.6.04]
P @ 0802
0.6 0.6 o
[ i, 1,0]
4
05370 375 380 385 390 395 400 ©3.60 3.65 3.70 3.5 3.80 3.85 3.00

b]

(a) SL

]7]

(b) WS

0.6 0.3
l"\\\
05 Gl 025
’II \\‘ % -~
04 ,' | 02
o 1 \ (] ¥ \
) ! \ | / \
=) / \ =) / .
<03 1 Zois 3
Z / \ N / \\
Ro2 i S o
/ ‘\\ /, \
0.1 \ 0.05 :
0.0—==T655 200 300 400 300 00700 —200 0 200 400 600
R
(a) SL (b) WS

Fig. 7. Distribution of reputation of the system at fixed times. We set ¢ to

Fig. 6. Plots of cooperation frequency against different initial game states.
The ranges of z-axis are set as [3.7,4.0] and [3.6,3.9] in subplots (a) and
(b), with steps equal to 0.05, whereas the ranges of y-axis in two subplots
are set as [0.5,1.05]. bo is fixed as 3 in both subplots. Other parameters:
bgp = 2.7 and by = 2 under SL, bp = 3.6 and b; = 3 under WS, ¢ = 1,
0=02,xk=1,and a = 4.

In Figs. 6(a) and 6(b), we examine different initial patterns,
e.g., [0.2,0.8] means during initialization, there is a 20%
probability of initializing it as Gy and 80% as G1. As we can
clearly see, f. does not exhibit significant differences under

2000 to record and observe the distribution of all individuals’ reputations in
SL and WS, shown in subplots (a) and (b), respectively. The parameters of
the two subplots are set as by = 3.7 and 3.5 respectively with the same
bo = 3. The final outcomes are averaged over 100 independent simulations
to maintain a good accuracy of the simulation results. Other parameters are:
c=1,0=02 k=1, and a = 4.

As shown in Fig. 7(a), the distribution of the reputation
approximates the normal distribution at ¢ 2000 in SL.
The mean p and standard deviation o of the reputation
in Figs. 7(a) and 7(b) are around (y,0) (275,71) and
(85,173), respectively. That is to say, compared to SL, the
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expectation of reputation in WS is smaller, but the variance
is higher. In detail, as we can observe in WS, compared to
SL, a certain proportion of individuals with reputations lower
than zero exists. Interestingly, the observed proportion of such
individuals is significantly higher than what is predicted by the
normal distribution model fitted to the data, compared to that
in SL. Moreover, the overall reputation distribution relatively
deviates from the normal distribution in WS, exhibiting char-
acteristics of skewness.

G. Cooperation Frequency on the (6,a) Parameter Space

In the previous subsections, two important parameters re-
garding the effect and strength of reputation, i.e., a and ¢ are
fixed as 4 and 0.2 respectively. It remains unclear whether and
how a and § affect f. level. Therefore, we made systematic
measures at different pairs of these parameters and the results

are summarized in Fig. 8.
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Fig. 8. Heatmaps of cooperation frequency (f.) on J-a parameter space in
SL (panel (a)) and WS (panel (b)) networks. The z-axis is set as § within
the range [0.0,1.0] and y-axis is set as a within the range [3.5,4.5]. The
meaning of colors is explained in the right-hand side legend for each panel.
The outcomes are averaged over 50 independent simulations to maintain a
good accuracy of the simulation results. Other parameters are: by = 3.7
under SL and b; = 3.65 under WS, by =3, c=1,and Kk = 1.

Across the two network types (SL in subplot (a) and WS
in subplot (b)), f. is observed to increase monotonically with
the rise in parameter . However, the variation in a does not
exert a sensible influence on f.. Generally, in SL and WS,
the effect of a and ¢ is relatively limited in the promotion
of cooperative behavior compared to the difference between
the two games Ab, as shown in previous subsections. And,
the variation of f., under the same parameters, is sharper
in WS than in SL, reflected by the range of the color bar.
Furthermore, both heatmaps exhibit distinct vertical strip-like
patterns, in which the color variations are primarily confined
to changes along the 4. This highlights the important role of
0 and reputation in evolutionary outcomes.

H. Game Transitions in General Case

As mentioned, Eq. 3 describes the general case of game
transitions. Therefore, we now turn to game transitions among
three states (G, G1, and GG3), where GGy and G5 are the most
and least valuable states, respectively, i.e., by > by > by. In

particular, we proceed with the game transition matrices given
by Ref. [39], i.e.,

oy 0 ]
Pl = 0 1—-p »p
| 0 0 1
[1—p p O
pl=| 0 1 o0 |, (11)
0 p 1-p
10 0
Pl =|p 1-p 0
P 0 1-p

where 0 < p < 1 is the transition probability. Eq. 11
indicates that the game transitions from a deterministic to a
probabilistic pattern, where mutual cooperation (resp. mutual
defection) tends to result in G (resp. G2). In contrast, uni-
lateral cooperation or defection yields a moderately valuable
G . For simplicity, we suppose the differences Ab; between
G; and G;41 (i = 0,1) are the same, denoted as Ab. In this
subsection, we explore how the level of cooperation varies
under the joint action of Ab and p, and typical results are
shown in Figs. 9 and 10.
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Fig. 9. Plots of cooperation frequency f. (y-axis) against differences between
three games Ab (z-axis). For simplicity, we set Ab = bg —b; = b1 — b2 and
values of p in {0.3,0.4,0.5,0.6,0.7,0.8} in SL and WS. In two subplots,
we fix by to 4. The ranges of x-axis are set as [0.8, 1.2] with steps equal to
0.1 in two subplots, with steps equal to 0.2, whereas the ranges of y-axis in
two subplots are set as [0.1,1.05]. Other parameters are: ¢ = 1, § = 0.2,
k=1,and a = 4.

In Figs. 9(a) and 9(b), we can arrive at the conclusion that
the increase in Ab and p can significantly promote cooperative
behavior. Additionally, since Ab in WS is one-half of that
set in SL, the escalation in f. in WS does not exhibit as
pronounced as it does in SL. This suggests that the disparity of
benefits offered by altruistic actions within games is a crucial
factor in the success of cooperation.

Most notably, the unilateral increase of b; can not facilitate
fe in SL as effectively as WS as presented in Figs. 10(a) and
10(b). Concretely, even if the parameters are set as by = 10,
b1 =9, and by = 8, f. is no more than 0.9, far from the state
of pure cooperators, in SL. Conceptually similar phenomena
have also been described in the previous section, where only
two possible games are considered.

1. Cooperation Density Affected by Network Size

In previous subsections, the network size is fixed to 1600,
hence it is a crucial question whether network size affects
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Fig. 10. Plots of cooperation frequency f. (y-axis) against different transition
probabilities p (z-axis). For simplicity, we set Ab = bg —b1; = by — by equal
to 1 and 0.5 in SL and WS respectively (e.g., the legend b1 = 3, in subplot (a),
indicates bp = 4 and bz = 2 and in subplot (b), the legend b; = 3.5 means
bo = 4 and b2 = 3) and make values of p vary from 0.3 to 0.7 with step
equal to 0.1 in SL and WS. Other parameters are the same as those in Fig. 9.

evolutionary outcomes. To answer this, we here evaluate the
robustness of the proposed model by varying network sizes
under different pairs of parameters. Representative results in
SL and WS are shown in Fig. 11, where the network sizes of
SL and WS vary from 900 to 3600.
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Fig. 11. Plots of cooperation density f. (y-axis) against different network
scales IV (z-axis). N varies from the square of 30 to 60 with step equal to 5.
The outcomes are averaged over thirty independent simulations to maintain
a good accuracy of the simulation results. Other parameters are the same as
those in Fig. 1.

In Figs. 11(a) and 11(b), both SL and WS exhibit only
minimal fluctuation in f.. More precisely, in SL, the variances
for the five cases, from top to bottom corresponding to
the order of the legend, are (0.0,2.8,1.9,1.6,1.4) x 1075
respectively, and similarly in WS, from top to bottom, the
corresponding variances are (0.0,6.4,1.0,9.3,0.051) x 1075,
The results suggest that the network scale has a negligible
impact on cooperative behavior when the network scale is
substantial, highlighting the robustness of our model behavior.
Moreover, for PBIGTs in SL, though under different sizes,
fe does not show explicit differences, which aligns with our
previous analysis.

J. Evolution of Cooperation with Mutation

In this subsection, considering mutation (or random strategy
exploration [56]) plays an important role in understanding the
emergence of cooperation. Hence, we relax the assumption
that the strategy updating of individuals consistently adheres
to the revised Fermi function described in Eq. 8. Therefore, we

introduce the mutation rate (or exploration rate) 0 < p < 1.
More specifically, with probability 1 — pu, a strategy update
goes with the Fermi function. Otherwise, a random mutation
occurs (with probability p), with a probability of v to C' and
1 — v to D, where v is known as the mutational bias [63].
In conventional scenarios, v is set as 1/2 by default, i.e., the
mutation is unbiased. Therefore, the update of ¢’s strategy at
t can be expressed as follows:

sg(i),with probability (1 — z)P(s; < sg@)),
st, with probability (1 — u)[1 —P(s; < sg())],
C, with probability pwv,

D, with probability p(1 — v).

t+1
s, =

(12)
In Figs. 12 and 13, we demonstrate how the variation of u
and v affect f..
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Fig. 12. Plots of cooperation frequency against evolutionary time with

mutation. This figure shows the evolution of f. over time on SL (in subplot
(a)) and WS (in subplot (b)), respectively, where the x-axis is the time ¢
and y-axis corresponds to the cooperation frequency f., under parameters
bp = 4.5, by = 3 and p = 0.02. Other parameters are: by = 4.5, by = 3,
c=1,0=02, k=1, and a = 4.

In Fig. 12, we exhibit how f. varies with the evolution-
ary time t. The results indicate that game transitions can
effectively ensure the emergence of cooperation, even in the
presence of mutation. Furthermore, as v increases, the higher
and more stable the level of cooperation becomes. No matter
in SL and WS, f. finally reaches one stationary distribution.
To further explore the influence of y and v on f., typical
results are shown in Figs. 13(a) and 13(b).
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Fig. 13. Plots of cooperation frequency against different mutational biases.
We present f. (y-axis) against mutational biases v € {0.3,0.4,0.5,0.6,0.7}
(x-axis) on SL (in panel (a)) and WS (in panel (b)) under parameters by = 4.5
and by = 3. We set p € {0.01,0.02,0.05,0.08,0.1}. Other parameters are
the same as those in Fig. 12.
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In Fig. 13, as we can clearly see, for relatively large u
and relatively small v, cooperation collapses because the high-
frequency emergence of a mutant defector within a cluster of
cooperators spoils the spatial assortment of cooperative indi-
viduals and thus, inhibits the emergence of cooperation [64].
Moreover, in other cases, the evolving system would finally
enter a stationary distribution, as the ones shown in Figs. 12(a)
and 12(b). Particularly, in the proposed model, it can be
regarded as one special stationary distribution under the com-
bined effect of game transitions, reputations, mutations, and
selections, similar to the well-known “mutation-selection” sta-
tionary distribution [63], [65] and “game-mutation-selection”
stationary distribution [39].

To summarize our findings, we can conclude that the
proposed mechanism can make cooperation stable even when
a random strategy exploration is considered. It is found that
when the mutation rate p is relatively small and v is relatively
large, cooperation can still dominate the networked population
over defection.

IV. CONCLUSION AND DISCUSSION

The primary goal of this study was to elucidate the im-
pact of reputation on cooperative behavior in temporally
evolving environments, which stem from both intrinsic and
extrinsic dynamics. To obtain a comprehensive view of the
potential system behavior, we have concentrated on two
significant topologies, i.e., regular square-lattice and highly
random Watts—Strogatz small-world networks. Our work is
somewhat different compared to the existing literature, which
assumes a direct increase of the focal cooperative individual.
More specifically, our work proposed a growth mechanism
of reputation reflected by the cooperation level among its
neighbors, which is determined by the number of cooperators.
It is recognized that cooperation survives by forming clusters
to mitigate the exploitation by defectors [66]. Therefore,
it is unambiguous that such a mechanism is beneficial for
cooperators when clusters are formed and it is unfavorable
to cooperation before formation. It is the most different from
the previous mechanism, where in both mentioned cases, the
reputation of cooperators increases more than that of defectors,
as a direct reward for the altruistic behavior. By comprehensive
and intensive simulations, we have uncovered that increasing
the reputation strength § during the imitation process benefits
the cooperative behavior, but the reputation-fitness parameter
a does not work significantly. Additionally, an interesting
phenomenon has been observed regarding the influence of
game transition, where the unilateral value of b; fails to turn
the whole networked population into a pure cooperator state
in SL, indicating that the difference between games matters.

To conduct a thorough investigation, the effects of bi-
ased mutation are taken into account. We observed that the
cooperation frequency evolves into one “selection-mutation-
reputation-game” stationary distribution under specific param-
eters ;v and v. When the mutation rate is relatively large and
the mutational bias is relatively small, the spatial assortment of
cooperators would be diluted, thus resulting in the dominance
of defection.

10

Furthermore, the robustness of the proposed model is exam-
ined from two aspects. On the one hand, concerning whether
the initial game condition would affect strategy evolution, we
test different game distributions in the initial state and discuss a
special case where the game transition degenerates into a static
one. On the other hand, to assess the influence of network size
on the prevalence of cooperation, we implement a broad range
of scales in our analysis.

It is worth noting that, in recent and related works, the
changing environments exert distinctly disparate impacts on
evolutionary dynamics. For example, Stewart and Plotkin
demonstrate that in iterated two-player games, a collapse of
cooperation arises when there is a tradeoff between the benefits
and costs of cooperation [41]. The persistent oscillations of
strategies are observed with the “game-environment” feedback
in Refs. [42], [67]. In their study, Assaf et al. illustrate that
extrinsic noise related to the selection strength, modeled by
an Ornstein-Uhlenbeck process, has the potential to greatly
improve the probability of cooperation fixation [68]. Szolnoki
and Chen detect that the proposed “cooperation-environment”
coevolutionary rule in Ref. [69] significantly fertilizes the
flourish of cooperation. In comparison to recent works in
a changing environment, our model exhibits a degree of
distinction, accounting for both extrinsic factors and individ-
uals’ behaviors that facilitate a heterogeneous change of the
environment under the reputation mechanism.

This study mainly discusses transitions among different
dilemma strengths determined by individuals’ mutual be-
haviors to model the partner-fidelity feedback phenomenon
widely existing in evolutionary biology [70], [71]. Meanwhile,
individuals may encounter distinct game types across various
social contexts in reality, such as the battle of the sexes, hawk-
dove game, and chicken game. Even further, the combined
case, where both game mode and its corresponding strength are
allowed to vary according to certain reasonable rules, is all the
more attractive and intriguing. Therefore, further exploration is
an important goal and pursuit for future work. Ultimately, we
aspire for our investigation to make a meaningful contribution
to the realm of evolutionary game theory, specifically concern-
ing reputation mechanisms, game transitions, and associated
elements, thereby augmenting the practical applicability of
these subjects [72].
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