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Abstract—Understanding the emergence of cooperation in
society is an open problem. In response to this problem, the
network evolutionary game and its derivatives, such as
multigame, have been shown to be an effective method to
address social dilemmas. In this paper, we investigate the
memory-based multigame consisting of the prisoner's dilemma
game and the snowdrift game on the square lattice with
periodic boundary and small-world networks. Plus, we also
propose a novel strategy-updating rule by combining the
player's memory mechanism and replicator dynamics.
Subsequently, we conduct simulations to demonstrate the
effects of the payoff parameters and players' memories on
network cooperation behavior. Our results show that by
introducing the memory mechanisms and multigame,
cooperation can occur widely on complex networks.

Keywords—Evolutionary game, Memory-based multigame,
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I. INTRODUCTION

Understanding how cooperative behavior evolves has
been an ongoing effort that has attracted the attention of
researchers from a variety of disciplines [1]. The emergence
of evolutionary game theory offers a powerful mathematical
framework for exploring the underlying mechanisms for
solving cooperative dilemmas [2], which seeks to
mathematically capture behavior in strategic situations in
which the success of a player in making choices depends on
the preferences of others [3]. In addition, various
mechanisms have been proposed to explain the emergence of
cooperation in selfish groups, the most famous of which are
the five rules proposed by Nowak in 2006 [4], including
indirect reciprocity [5], direct reciprocity [6], kin selection
[7], network reciprocity [8], and group selection [9].
Meanwhile, the memory mechanisms of individuals also play
a crucial role in the gaming process, i.e., in reality,
individuals update their strategies usually not only
considering their own payoffs, but also the strategies they
have adopted in the past [10].

Complex networks, as quantification of real complex
systems, have developed rapidly in the past few decades.
With the introduction of the concept of scale-free networks
[11], researchers begin to realize the significance of network
science and gradually achieve fruitful results. A variety of
network models and their topological properties [12][13][14]
were springing up after the scale-free network was put
forward. For example, Boccaletti et al. [15] provided a
comprehensive review of the structural and dynamical
organization of graphs that are composed of different
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relationships (layers) between their constituents. Feng et al.
[16] proposed a subnormal distribution deduced from the
evolutionary networks with variable elements and
investigated its statistical properties to better characterize the
real distributions. Moreover, the temporal networks [17][18]
and higher-order networks [19][20] have also developed
rapidly in recent years. Furthermore, the existing research on
the evolutionary game has also yielded abundant results on
these novel network models, which can be summarized as
cooperative behavior can appear on different network
structures. For instance, Pi et al. [21] investigated the
evolutionary multigame with conformists and profiteers on
dynamic complex networks. Zeng et al. [22] introduced a
network model regarding the M/M/oo queuing system and

studied the weak prisoner's dilemmas.

Recently, some researchers have noticed that there should
not be one game in the population, i.e., the players in the
network are playing the multigame [23][24]. Additionally,
some studies have been conducted on players' memory
mechanisms and found that the emergence of cooperative
behavior in the network can be significantly facilitated by
concerning memory mechanisms. For example, Shu et al. [25]
proposed a new memory-based method and discovered that
high cooperation levels simultaneously emerged for both
small and large cost-to-benefit ratios. Based on the
aforementioned points, in this paper, we focus on the player's
memory mechanism, which ensures that the players
remember the strategies they have utilized in the past and
take them into account when updating their strategies.
Besides, the game played by the players in the network is not
just a single game, but a multigame consisting of the
prisoner's dilemma game and snowdrift game.

The structure of the paper is as follows: We describe our
multigame model and illustrate the strategy-updating rule of
players regarding the memory mechanism in Section II. In
Section III, we carry out numerical simulations based on the
constructed model and display the simulation results. Lastly,
we conclude this paper and depict the outlook in Section IV.

II. MODEL

In this section, we mainly present multiple games in the
network, with each player obtaining different payoffs based
on the game model they play. Subsequently, players will
update their strategies regarding their past memories and
their pursuit of maximum payoffs.
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A. The Multigame Model and Calculation of Players’
Payoffs

We first briefly introduce the prisoner's dilemma game
(PDG) and the snowdrift game (SDG) we will use in the
model. In PDG, consider two thieves who work in
partnership and are arrested and interrogated in isolation. If
both confess to the crime (defection), then both gain the
payoff of 0, called the “punishment for mutual defection”,
while if both refuse to confess (cooperation), they both gain
the payoff of 1, called the “reward for mutual cooperation”.
However, if one confesses (defection) and the other refuses
to confess (cooperation), the former gain the payoff of b,

called the “temptation to defect”, whereas the latter gain the
payoff of — 6, called the “suckers's payoff’. Thus, we can

denote the payoff matrix of the PDG as below:

1 -6
=)

In SDG, consider two drivers trapped on either side of a
large avalanche in a snowstorm, they now have two choices:
either get out of the car and shovel the snow (cooperation) or
stay in the car and do nothing (defection). If both drivers are
willing to get out of the car and shovel the snow, both get the
payoff of 1 per person since they are able to get home and
share the cost of shoveling the snow. If both drivers stay in
the warm car, they do not get home on time, i.e., both get the
payoff of 0. However, if one of them gets out of the car and
shovels, they both get home, while the shoveling driver
(cooperator) will have the job of shoveling alone and thus
gets the payoff of §. The driver staying in the car and doing

nothing (defector) gets home without having to work and
thus gets the maximum payoff of b . Therefore, according to

the practical meaning of the SDG description, we can
express the payoff matrix of the SDG as below:

16
m2=(, o)

where 1<b<2 and 0<§=<1 are two adjustable

parameters in Egs. 1 and 2. Generally, defectors will
dominate the network as b—2 , and cooperators will

(M

2

dominate the network as b— 1.

We investigate the multigame on a network with a group
of N players consisting of defectors and cooperators, where
each player performs a particular game with all neighbors,
either the PDG or the SDG. Besides, we introduce a
parameter p €[0, 1] to indicate the fraction of players that
play SDG, with the remaining players playing PDG.
Naturally, it will change to the traditional PDG when p =0,
and to the traditional SDG when p =1.

B. The Strategy Evolution of Player

In this subsection, we illustrate the rule for updating
strategies that combines players' memory and the pursuit of
maximum benefit. At each time step, the players in the
network update their strategies synchronously, i.e., each
player will decide the strategy to adopt at the next step based
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on his/her own memory and payoff. In reality, rational payers
usually take the strategies they used in the past into account
when updating their strategies, which means that they all
have memories. Besides, a rational player has a tendency to
chase maximum payoff, i.e. he/she prefers to adopt a strategy
with high payoff among his/her neighbors, which is
portrayed by replicator dynamics. Concretely, a game player
obtains payoff by playing with all neighbors. And when a
game player = decides to update his/her strategy, he/she will

randomly choose one of his/her neighbors y to compare
payoff, and if the payoff U, of the neighbor y is greater than
the payoff U, of the player z, i.e., U, >U,, then the player
z with memory mechanism will imitate the strategy of
player y in the next game with a probability considering the

strategies utilized in the past and the payoff difference
between player z and player y is expressed as follows:

Z& (Sun(i),s,)
:C%

Uu-U, .

P D - max (k,,k,) "

+(1—e¢) G

Herein, s; indicates the strategy of the player ¢, c
represents the memory strength, S, r denotes the strategy set
of the player z in the past T game steps, and we can define
6(S,.r(i),s,) as below:

1, SLT(Z):SU

5(SZ,T(i),Sy){O S, (i) #s,

“4)

which is a Dirac function. It is worth noting that we
consider the memory length of the player to be ¢t as ¢t <T'

since the evolution time has not yet reached 7' currently.
Moreover, max (k,,k,) represents the greater degree of
player « and player y , and D denotes the difference

between the maximum parameter and the minimum
parameter in the payoff matrix, which means D =56+ 6 for

PDG while D=5 for SDG. Besides, the operator [z]5 is
defined as follows:

0,2<0
2, 0<2z<1.
1,z=1

2] =

)

The effect of Eq. 5 is to keep the probability P that a

player imitates a neighbor's strategy in the range of 0 to 1
—U
y T

since the equation ———————
4 D - max(k,,k,)

may be greater than 1 or

less than 0.

III. SIMULATIONS AND DISCUSSIONS

In this section, we present our simulation methods and
results to demonstrate the effect of some parameters in the
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model on the fraction of network cooperation ( f.), which is

denoted as the number of cooperators in the network divided
by the size of the network.

A. Methods

The simulation is implemented in Python. We carry out
the simulation on 2 networks, including the square lattice
with periodic boundary (SL) and the WS network, which is
proposed by Watts and Strogatz in 1998 [26]. In this paper,
we utilize the function watts strogate graph() of

networkzr in Python to generate the WS network. At the
beginning of the simulation, the WS network has 1000 nodes
and the SL network has 32 X 32 nodes, where each node

represents a player, and the connected edges between nodes
indicate the events related to interactions. Moreover, the
player's strategy at the beginning is randomly assigned to
cooperate or defect, and the percentage of SDG players in the
network is p. Additionally, we perform the evolution steps

of cooperation with a length of 7'=10* steps to ensure that

the fraction of cooperation in the network reaches a smooth
state. In order to avoid additional disturbances, we average 5
independent simulations for each set of parameters to obtain
the final results.

B. The Influence of the Memory Strength and Proportion of
SDG Performed on Network Cooperation Behavior

In this simulation, we investigate the impact of the
proportion p of SDG performed on network cooperation
behavior. By fixing the memory length T'=1>5, the payoff
parameters b=1.3, and 6 = 0.3, we show the function of
cooperation frequency f. and proportion of SDG performed
p<€[0,1] under the conditions of memory strength ¢ = 0,
0.4, 0.8, and 1 respectively in Fig. 1. Both WS and SL
networks exhibit an increase in the frequency of cooperation
as the proportion of SDG performed in the network grows,
except ¢ =1, that will be discussed later. Besides, as shown
in both Figs. 1(a) and 1(b), both networks illustrate a greater
memory strength ¢ causing a higher proportion of
cooperation f, as p is large enough (p>0.7), although
this phenomenon is not significant at p<<0.7 . The

difference between Figs. 1(a) and 1(b) is that under the same
conditions, the WS network will be more conducive to the
emergence of cooperation than the SL network since the
frequency of cooperation f, is greater in the WS network
(Fig. 1(a)) than that in the SL network (Fig. 1(b)) as the
memory strength ¢ and proportion of SDG performed p are

the same.

Herein, we explain the case of ¢ =1 separately in Fig. 1.
indicated Eq. 3, it become

> 8 (Surli),s)
P(s, +s,)= " T

that the player's strategy-updating rule at this point is only
related to the initial strategy of the game, but not to the
strategies of the neighbors and their payoffs, that is to say,
the player's strategy will not change as time progresses.
Therefore, the density of cooperation will fluctuate around

As in will

as ¢=1, which means
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0.5 with the change of p when ¢ =1, since the initial setting

of each round of the game is that the probability of each
player choosing to cooperate or defect equals 0.5.

(a) WS

0.6

0.5

0.4

0.3

0.2

0.1

0

0.6 0.8 1.0

(b) SL
Fig. 1. The influence of the memory strength and proportion of SDG
performed on network cooperation behavior. We set the ratio p conducting

SDG to [0, 1] and observe the evolution of cooperation in WS (in panel (a))
and SL (in panel (b)) networks under the conditions of memory strength ¢ =
0, 0.4, 0.8, and 1, respectively. Both networks, except for ¢ = 1, demonstrate
that the frequency of cooperation in the network grows as the fraction p of

SDG performed increases.

C. The Influence of the Payoff Parameters on Network
Cooperation Behavior

Subsequently, we set the x-axis as be[1, 2] and the y-
axis as 6 €[0, 1] to further explore the effect of the payoff

parameters on the frequency of network cooperation. The
heat map of the cooperation frequency with payoff
parameters on the WS network is demonstrated in Fig. 2(a),
from which we can derive that a small b or a large § can

promote the cooperation density in the WS network. Next,
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we display the relationship between payoff parameters and
cooperation frequency on the SL network in Fig. 2(b), where
the memory length 7'=25, memory strength ¢c=0.2, and

proportion of SDG performed p=0.8. We can yield the
results that the frequency of cooperation increases with &
while decreasing with b, which is similar to the WS network

shown in Fig. 2(a). Furthermore, the WS network enhances
cooperation better than the SL network by comparing Figs.
2(a) and 2(b), which is consistent with our previous analysis.
We note that although a few color regions in the heat maps
of Fig. 2 are not ordered, and the possible reason is the
randomness of player decisions, the effect of the previously
discussed payoff parameters on network cooperation is not
significantly affected.

1.0 1.0
0.8 0.8
0.6 0.6
4=
0.4 0.4
0.2 0.2
0.0
0.(%“0 1.2 14 16 1.8 2.0
b
(a) WS
1.0 1.0
0.8 0.8
0.6 0.6
4=
0.4 0.4
0.2 0.2
0.(%“0 1.2 14 16 1.8 2.0
b
(b) SL

Fig. 2. The influence of the payoff parameters on network cooperation
behavior. We set the payoff parameters b and & to [1, 2] and [0, 1],
respectively to study the evolution of cooperation in WS (in panel (a)) and
SL (in panel (b)) networks. Both networks display that the cooperation will
be facilitated as & grows, whereas will be inhibited as b increases.

Then, we perform an analysis of the causes of the
previously mentioned phenomena. As demonstrated in Egs. 1
and 2, the payoff of the defector will increase when the
payoff parameter b increases, which will result in more

players in the network adopting the defection strategy.
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Therefore, we can derive that a greater b affords a smaller

cooperation density. Moreover, for the PDG player, the
payoff of the cooperation will decrease when the payoff
parameter § increases, however, for the SDG player, the

payoff of the cooperator will be promoted as the payoff
parameter 6 grows. Plus, the proportion p of players

performing SDG in the simulation of Fig. 2 is equal to 0.8.
Consequently, we can deduce that the cooperative behavior
in the network will be enhanced by increasing the payoff
parameter § .

IV. CONCLUSIONS AND OUTLOOKS

In this paper, we investigate the multigame (PDG and
SDG) between players with memory mechanisms on the
square lattice networks with periodic boundary and small-
world networks. Initially, we introduce the traditional PDG
and SDG and illustrate the calculation of the payoff based on
the game played by the players. Subsequently, we propose a
new rule of strategy updating regarding the player's memory
mechanism and the nature of the quest for maximum payoff.
In the simulation, we explore the impact of the memory
strength and proportion of SDG performed on the emergence
of network cooperation, and we find that cooperators can be
facilitated by improving the memory strength of players or
by increasing the proportion of SDG performed in the
network. In addition, the influence of the payoff parameters
in the game on the proportion of network cooperation is
examined in the form of heat maps, and we discover that a
larger value of b inhibits the emergence of cooperators in the

network. Although the percentage of cooperation grows by
improving 6, the possible reason for this is due to the high

ratio of SDG performed in the network. However, very
different results may occur when the proportion of SDG
performed in the network is small, i.e., the proportion of
cooperators will decrease as 6 grows since the fact that a

larger 6 in PDG will afford a more negative payoff for
cooperators.

In our work, the multigame we studied is only based on
PDG and SDG, and there are some other games that can be
investigated, such as the public goods game, stag hunt game,
etc. Plus, there are also some extensions to study based on
our research. For example, we explore the cooperation
frequency in two network types by the replicator dynamics.
Different strategy-updating rules, such as the Femi process,
the imitate the best, and the birth-death process, may yield
new results. Finally, we hope that our study will contribute to
future research related to the network evolutionary game.
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