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Abstract—Understanding the emergence of cooperation in 
society is an open problem. In response to this problem, the 
network evolutionary game and its derivatives, such as 
multigame, have been shown to be an effective method to 
address social dilemmas. In this paper, we investigate the 
memory-based multigame consisting of the prisoner's dilemma 
game and the snowdrift game on the square lattice with 
periodic boundary and small-world networks. Plus, we also 
propose a novel strategy-updating rule by combining the 
player's memory mechanism and replicator dynamics. 
Subsequently, we conduct simulations to demonstrate the 
effects of the payoff parameters and players' memories on 
network cooperation behavior. Our results show that by 
introducing the memory mechanisms and multigame, 
cooperation can occur widely on complex networks. 

Keywords—Evolutionary game, Memory-based multigame, 
Complex networks, Coevolution 

I. INTRODUCTION

Understanding how cooperative behavior evolves has 
been an ongoing effort that has attracted the attention of 
researchers from a variety of disciplines [1]. The emergence 
of evolutionary game theory offers a powerful mathematical 
framework for exploring the underlying mechanisms for 
solving cooperative dilemmas [2], which seeks to 
mathematically capture behavior in strategic situations in 
which the success of a player in making choices depends on 
the preferences of others [3]. In addition, various 
mechanisms have been proposed to explain the emergence of 
cooperation in selfish groups, the most famous of which are 
the five rules proposed by Nowak in 2006 [4], including 
indirect reciprocity [5], direct reciprocity [6], kin selection 
[7], network reciprocity [8], and group selection [9]. 
Meanwhile, the memory mechanisms of individuals also play 
a crucial role in the gaming process, i.e., in reality, 
individuals update their strategies usually not only 
considering their own payoffs, but also the strategies they 
have adopted in the past [10]. 

Complex networks, as quantification of real complex 
systems, have developed rapidly in the past few decades. 
With the introduction of the concept of scale-free networks 
[11], researchers begin to realize the significance of network 
science and gradually achieve fruitful results. A variety of 
network models and their topological properties [12][13][14] 
were springing up after the scale-free network was put 
forward. For example, Boccaletti et al. [15] provided a 
comprehensive review of the structural and dynamical 
organization of graphs that are composed of different 

relationships (layers) between their constituents. Feng et al. 
[16] proposed a subnormal distribution deduced from the
evolutionary networks with variable elements and
investigated its statistical properties to better characterize the
real distributions. Moreover, the temporal networks [17][18]
and higher-order networks [19][20] have also developed
rapidly in recent years. Furthermore, the existing research on
the evolutionary game has also yielded abundant results on
these novel network models, which can be summarized as
cooperative behavior can appear on different network
structures. For instance, Pi et al. [21] investigated the
evolutionary multigame with conformists and profiteers on
dynamic complex networks. Zeng et al. [22] introduced a
network model regarding the  queuing system and
studied the weak prisoner's dilemmas.

Recently, some researchers have noticed that there should 
not be one game in the population, i.e., the players in the 
network are playing the multigame [23][24]. Additionally, 
some studies have been conducted on players' memory 
mechanisms and found that the emergence of cooperative 
behavior in the network can be significantly facilitated by 
concerning memory mechanisms. For example, Shu et al. [25] 
proposed a new memory-based method and discovered that 
high cooperation levels simultaneously emerged for both 
small and large cost-to-benefit ratios. Based on the 
aforementioned points, in this paper, we focus on the player's 
memory mechanism, which ensures that the players 
remember the strategies they have utilized in the past and 
take them into account when updating their strategies. 
Besides, the game played by the players in the network is not 
just a single game, but a multigame consisting of the 
prisoner's dilemma game and snowdrift game. 

The structure of the paper is as follows: We describe our 
multigame model and illustrate the strategy-updating rule of 
players regarding the memory mechanism in Section II. In 
Section III, we carry out numerical simulations based on the 
constructed model and display the simulation results. Lastly, 
we conclude this paper and depict the outlook in Section IV. 

II. MODEL

In this section, we mainly present multiple games in the 
network, with each player obtaining different payoffs based 
on the game model they play. Subsequently, players will 
update their strategies regarding their past memories and 
their pursuit of maximum payoffs. 
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A. The Multigame Model and Calculation of Players' 
Payoffs 

We first briefly introduce the prisoner's dilemma game 
(PDG) and the snowdrift game (SDG) we will use in the 
model. In PDG, consider two thieves who work in 
partnership and are arrested and interrogated in isolation. If 
both confess to the crime (defection), then both gain the 
payoff of 0, called the “punishment for mutual defection”, 
while if both refuse to confess (cooperation), they both gain 
the payoff of 1, called the “reward for mutual cooperation”. 
However, if one confesses (defection) and the other refuses 
to confess (cooperation), the former gain the payoff of , 
called the “temptation to defect”, whereas the latter gain the 
payoff of , called the “suckers's payoff”. Thus, we can 
denote the payoff matrix of the PDG as below: 

  (1) 

In SDG, consider two drivers trapped on either side of a 
large avalanche in a snowstorm, they now have two choices: 
either get out of the car and shovel the snow (cooperation) or 
stay in the car and do nothing (defection). If both drivers are 
willing to get out of the car and shovel the snow, both get the 
payoff of 1 per person since they are able to get home and 
share the cost of shoveling the snow. If both drivers stay in 
the warm car, they do not get home on time, i.e., both get the 
payoff of 0. However, if one of them gets out of the car and 
shovels, they both get home, while the shoveling driver 
(cooperator) will have the job of shoveling alone and thus 
gets the payoff of . The driver staying in the car and doing 
nothing (defector) gets home without having to work and 
thus gets the maximum payoff of . Therefore, according to 
the practical meaning of the SDG description, we can 
express the payoff matrix of the SDG as below: 

  (2) 

where  and  are two adjustable 
parameters in Eqs. 1 and 2. Generally, defectors will 
dominate the network as , and cooperators will 
dominate the network as . 

We investigate the multigame on a network with a group 
of  players consisting of defectors and cooperators, where 
each player performs a particular game with all neighbors, 
either the PDG or the SDG. Besides, we introduce a 
parameter  to indicate the fraction of players that 
play SDG, with the remaining players playing PDG. 
Naturally, it will change to the traditional PDG when , 
and to the traditional SDG when . 

B. The Strategy Evolution of Player 
In this subsection, we illustrate the rule for updating 

strategies that combines players' memory and the pursuit of 
maximum benefit. At each time step, the players in the 
network update their strategies synchronously, i.e., each 
player will decide the strategy to adopt at the next step based 

on his/her own memory and payoff. In reality, rational payers 
usually take the strategies they used in the past into account 
when updating their strategies, which means that they all 
have memories. Besides, a rational player has a tendency to 
chase maximum payoff, i.e. he/she prefers to adopt a strategy 
with high payoff among his/her neighbors, which is 
portrayed by replicator dynamics. Concretely, a game player 
obtains payoff by playing with all neighbors. And when a 
game player  decides to update his/her strategy, he/she will 
randomly choose one of his/her neighbors  to compare 
payoff, and if the payoff  of the neighbor  is greater than 
the payoff  of the player , i.e., , then the player 

 with memory mechanism will imitate the strategy of 
player  in the next game with a probability considering the 
strategies utilized in the past and the payoff difference 
between player  and player  is expressed as follows: 

 (3) 

Herein,  indicates the strategy of the player ,  
represents the memory strength,  denotes the strategy set 
of the player  in the past  game steps, and we can define 

 as below: 

 (4) 

which is a Dirac function. It is worth noting that we 
consider the memory length of the player to be  as  
since the evolution time has not yet reached  currently. 
Moreover,  represents the greater degree of 
player  and player , and  denotes the difference 
between the maximum parameter and the minimum 
parameter in the payoff matrix, which means  for 
PDG while  for SDG. Besides, the operator  is 
defined as follows: 

  (5) 

The effect of Eq. 5 is to keep the probability  that a 
player imitates a neighbor's strategy in the range of 0 to 1 

since the equation  may be greater than 1 or 

less than 0. 

III. SIMULATIONS AND DISCUSSIONS 
In this section, we present our simulation methods and 

results to demonstrate the effect of some parameters in the 
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model on the fraction of network cooperation ( ), which is 
denoted as the number of cooperators in the network divided 
by the size of the network. 

A. Methods 
The simulation is implemented in Python. We carry out 

the simulation on 2 networks, including the square lattice 
with periodic boundary (SL) and the WS network, which is 
proposed by Watts and Strogatz in 1998 [26]. In this paper, 
we utilize the function  of 

 in Python to generate the WS network. At the 
beginning of the simulation, the WS network has 1000 nodes 
and the SL network has  nodes, where each node 
represents a player, and the connected edges between nodes 
indicate the events related to interactions. Moreover, the 
player's strategy at the beginning is randomly assigned to 
cooperate or defect, and the percentage of SDG players in the 
network is . Additionally, we perform the evolution steps 
of cooperation with a length of  steps to ensure that 
the fraction of cooperation in the network reaches a smooth 
state. In order to avoid additional disturbances, we average 5 
independent simulations for each set of parameters to obtain 
the final results. 

B. The Influence of the Memory Strength and Proportion of 
SDG Performed on Network Cooperation Behavior 

In this simulation, we investigate the impact of the 
proportion  of SDG performed on network cooperation 
behavior. By fixing the memory length , the payoff 
parameters , and , we show the function of 
cooperation frequency  and proportion of SDG performed 

 under the conditions of memory strength  = 0, 
0.4, 0.8, and 1 respectively in Fig. 1. Both WS and SL 
networks exhibit an increase in the frequency of cooperation 
as the proportion of SDG performed in the network grows, 
except , that will be discussed later. Besides, as shown 
in both Figs. 1(a) and 1(b), both networks illustrate a greater 
memory strength  causing a higher proportion of 
cooperation  as  is large enough ( ), although 
this phenomenon is not significant at . The 
difference between Figs. 1(a) and 1(b) is that under the same 
conditions, the WS network will be more conducive to the 
emergence of cooperation than the SL network since the 
frequency of cooperation  is greater in the WS network 
(Fig. 1(a)) than that in the SL network (Fig. 1(b)) as the 
memory strength  and proportion of SDG performed  are 
the same. 

Herein, we explain the case of  separately in Fig. 1. 
As indicated in Eq. 3, it will become 

 as , which means 

that the player's strategy-updating rule at this point is only 
related to the initial strategy of the game, but not to the 
strategies of the neighbors and their payoffs, that is to say, 
the player's strategy will not change as time progresses. 
Therefore, the density of cooperation will fluctuate around 

0.5 with the change of  when , since the initial setting 
of each round of the game is that the probability of each 
player choosing to cooperate or defect equals 0.5. 

 
(a) WS 

 
(b) SL 
Fig. 1. The influence of the memory strength and proportion of SDG 
performed on network cooperation behavior. We set the ratio  conducting 
SDG to [0, 1] and observe the evolution of cooperation in WS (in panel (a)) 
and SL (in panel (b)) networks under the conditions of memory strength c = 
0, 0.4, 0.8, and 1, respectively. Both networks, except for c = 1, demonstrate 
that the frequency of cooperation in the network grows as the fraction  of 
SDG performed increases. 

C. The Influence of the Payoff Parameters on Network 
Cooperation Behavior 

Subsequently, we set the x-axis as  and the y-
axis as  to further explore the effect of the payoff 
parameters on the frequency of network cooperation. The 
heat map of the cooperation frequency with payoff 
parameters on the WS network is demonstrated in Fig. 2(a), 
from which we can derive that a small  or a large  can 
promote the cooperation density in the WS network. Next, 

544

Authorized licensed use limited to: Southwest University. Downloaded on October 16,2023 at 11:22:13 UTC from IEEE Xplore.  Restrictions apply. 



we display the relationship between payoff parameters and 
cooperation frequency on the SL network in Fig. 2(b), where 
the memory length , memory strength , and 
proportion of SDG performed . We can yield the 
results that the frequency of cooperation increases with  
while decreasing with , which is similar to the WS network 
shown in Fig. 2(a). Furthermore, the WS network enhances 
cooperation better than the SL network by comparing Figs. 
2(a) and 2(b), which is consistent with our previous analysis. 
We note that although a few color regions in the heat maps 
of Fig. 2 are not ordered, and the possible reason is the 
randomness of player decisions, the effect of the previously 
discussed payoff parameters on network cooperation is not 
significantly affected. 

 
(a) WS 

 
(b) SL 
Fig. 2. The influence of the payoff parameters on network cooperation 
behavior. We set the payoff parameters b and δ to [1, 2] and [0, 1], 
respectively to study the evolution of cooperation in WS (in panel (a)) and 
SL (in panel (b)) networks. Both networks display that the cooperation will 
be facilitated as δ grows, whereas will be inhibited as b increases. 

Then, we perform an analysis of the causes of the 
previously mentioned phenomena. As demonstrated in Eqs. 1 
and 2, the payoff of the defector will increase when the 
payoff parameter  increases, which will result in more 
players in the network adopting the defection strategy. 

Therefore, we can derive that a greater  affords a smaller 
cooperation density. Moreover, for the PDG player, the 
payoff of the cooperation will decrease when the payoff 
parameter  increases, however, for the SDG player, the 
payoff of the cooperator will be promoted as the payoff 
parameter  grows. Plus, the proportion  of players 
performing SDG in the simulation of Fig. 2 is equal to 0.8. 
Consequently, we can deduce that the cooperative behavior 
in the network will be enhanced by increasing the payoff 
parameter . 

IV. CONCLUSIONS AND OUTLOOKS 
In this paper, we investigate the multigame (PDG and 

SDG) between players with memory mechanisms on the 
square lattice networks with periodic boundary and small-
world networks. Initially, we introduce the traditional PDG 
and SDG and illustrate the calculation of the payoff based on 
the game played by the players. Subsequently, we propose a 
new rule of strategy updating regarding the player's memory 
mechanism and the nature of the quest for maximum payoff. 
In the simulation, we explore the impact of the memory 
strength and proportion of SDG performed on the emergence 
of network cooperation, and we find that cooperators can be 
facilitated by improving the memory strength of players or 
by increasing the proportion of SDG performed in the 
network. In addition, the influence of the payoff parameters 
in the game on the proportion of network cooperation is 
examined in the form of heat maps, and we discover that a 
larger value of  inhibits the emergence of cooperators in the 
network. Although the percentage of cooperation grows by 
improving , the possible reason for this is due to the high 
ratio of SDG performed in the network. However, very 
different results may occur when the proportion of SDG 
performed in the network is small, i.e., the proportion of 
cooperators will decrease as  grows since the fact that a 
larger  in PDG will afford a more negative payoff for 
cooperators. 

In our work, the multigame we studied is only based on 
PDG and SDG, and there are some other games that can be 
investigated, such as the public goods game, stag hunt game, 
etc. Plus, there are also some extensions to study based on 
our research. For example, we explore the cooperation 
frequency in two network types by the replicator dynamics. 
Different strategy-updating rules, such as the Femi process, 
the imitate the best, and the birth-death process, may yield 
new results. Finally, we hope that our study will contribute to 
future research related to the network evolutionary game. 
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