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 A B S T R A C T

The structure of heterogeneous networks and human mobility patterns profoundly influence the spreading 
of endemic diseases. In small-scale communities, individuals engage in social interactions within confined 
environments, such as homes and workplaces, where daily routines facilitate virus transmission through 
predictable mobility pathways. Here, we introduce a metapopulation model grounded in a Microscopic Markov 
Chain Approach to simulate susceptible–infected–susceptible dynamics within structured populations. There 
are two primary types of nodes, homes and destinations, where individuals interact and transmit infections 
through recurrent mobility patterns. We derive analytical expressions for the epidemic threshold and validate 
our theoretical findings through comparative simulations on Watts–Strogatz and Barabási–Albert networks. The 
experimental results reveal a nonlinear relationship between mobility probability and the epidemic threshold, 
indicating that further increases can inhibit disease transmission beyond a certain critical mobility level.
1. Introduction

In recent years, the increasing importance of human mobility has 
played a critical role in the dynamic spreading of infectious diseases, 
particularly in small-scale communities where individuals follow rou-
tine movement patterns [1–6]. The distinctive structures of social net-
works and the recurrent mobility patterns of individuals are closely 
intertwined with the spatiotemporal dynamics of epidemics [7–11]. 
Throughout history, epidemics such as the Black Death [12] were pri-
marily propagated along specific trade routes or confined urban areas, 
which made the spatial and temporal spreading of diseases somewhat 
predictable. However, with the acceleration of economic globaliza-
tion and expansion of transportation networks, epidemics nowadays 
exhibit characteristics of rapid dissemination and broader geographic 
reach [13–15]. The COVID-19 pandemic exemplified this phenomenon 
by simultaneously manifesting infection cases across multiple regions 
worldwide [16,17]. Compared to previous centuries, the scale and 
speed of epidemic propagation have changed dramatically. The study 
of the spatial propagation of pathogens through the reaction–diffusion 
process has gained extensive application [18–20]. In the context of 
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the complex networks, the reaction phase represents the transmis-
sion of pathogens within a subpopulation or a patch through direct 
contact, while the diffusion phase corresponds to the movement of 
infected hosts across different subpopulations via connected pathways 
or transportation links [21].

The study of disease transmission dynamics within reaction–
diffusion systems is commonly referred to as the metapopulation model
[22–24]. The nodes of the metapopulation network represent popula-
tion groups, while the links signify the migration of individuals between 
different patches. Initially introduced by Richard Levins [25] in the 
field of population biology, Anderson and May [26] were the first to 
apply the metapopulation concept to the SIR model in epidemiological 
studies, offering an effective framework for investigating spatial dis-
ease transmission. To gain a deeper understanding of the micro-scale 
transmission processes of diseases within local communities and the 
long-distance spreading of diseases due to human mobility, a series 
of metapopulation models based on the microscopic Markov chain 
approach have been employed [27,28]. These models implement the 
dynamic process which involves movement–interaction–return (MIR) 
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three stages. At the start of each time step, individuals either remain 
stationary or move to neighboring patches with a certain probability, 
followed by interactions and the spreading of the virus within each 
patch, and finally, return to their original locations to initiate the next 
cycle.

While metapopulation models proved to be valuable in simulat-
ing recurrent human mobility patterns, many existing models assume 
that interactions are homogeneous mixing within communities, which 
oversimplifies the complex, heterogeneous nature of human contact 
patterns [29]. In reality, human social interactions are highly structured 
and unique, depending on both home and workplace environments.

In addition to models focusing on single network dynamics, re-
cent research has explored structured population network models that 
account for the interplay between human mobility and social con-
tacts [30–32]. Examples include heterogeneous social contact net-
works [33], bipartite networks distinguishing between daytime and 
nighttime infections [34], and models linking homes and public spaces 
in a bipartite structure [35]. However, the conventional assumption 
that nodes with similar attributes exhibit identical statistical properties 
fails to capture the heterogeneity of human environments and the 
cyclical nature of commuting patterns, thus addressing the relationships 
between these factors and the evolving dynamics of pandemics as an 
open challenge [36].

Building on these assumptions, in this work we utilize a Micro-
scopic Markov Chain Approach (MMCA) to simulate the Susceptible–
Infected–Susceptible (SIS) epidemic dynamics in structured heteroge-
neous populations characterized by recurrent mobility patterns. The 
network consists of two types of nodes: homes (e.g., hotels, dormito-
ries), where individuals interact based on social ties, and destinations 
(e.g., workplaces, offices) where interactions are assumed to follow 
a well-mixed approximation. At each time step, individuals migrate 
between these two patch types following recurrent movement patterns, 
and infections occur via different interaction modes depending on the 
location. The goal of this paper is to investigate how heterogeneous 
network structures and key factors such as mobility probability influ-
ence disease transmission. We provide a detailed description of the 
heterogeneous structured networks with recurrent mobility patterns 
and analytically derive the epidemic threshold, offering insights into 
the dynamics of epidemic spreading within small-scale communities.

The rest of the paper is presented as follows: In Section 2, we 
introduce the formulation of our model by Markovian equations in 
constrained areas with recurrent mobility patterns. Subsequently, we 
describe the detailed infection dynamics at two different types of loca-
tions and derive the epidemic threshold. We conduct simulations and 
analyze the experimental results in Section 3. Finally, we summarize 
the discussion and findings in Section 4.

2. Epidemic spreading in structured populations under recurrent 
mobility patterns

In our metapopulation model for epidemic spreading in structured 
populations, we consider 𝑁 subpopulations, each comprising two types 
of locations: destinations and homes. Each subpopulation 𝑖 has a pop-
ulation of 𝑛𝑖 agents. In this framework, each node in the network 
represents a subpopulation (or patch) with varying population sizes. 
Destinations, such as workplaces or shopping centers, serve as interac-
tion hubs where individuals engage in regular and frequent activities, 
and we model these interactions using a well-mixed approximation. In 
contrast to previous studies [34,35] that assumed homogeneous sub-
populations, we propose that interactions within homes are more con-
strained, occurring within personal social networks where individuals 
can only be infected by their immediate neighbors.

An important assumption in our model is that agents maintain 
their inherent social attributes, such as their degree of connectivity, 
when migrating to another subpopulation. Specifically, agents with a 
social connectivity of 𝑘 (i.e., 𝑘 neighbors) retain this same connectivity 
2

even after moving to a different community. This assumption helps 
explain the phenomenon of super-spreaders—individuals with higher-
than-average contact rates due to their biological and behavioral traits, 
leading to a disproportionately high number of infections [37]. Their 
elevated contact rates, driven by unique social behaviors, contribute 
significantly to the rapid spread of infections.

Building on this, each individual in home 𝑖 interacts with approxi-
mately 𝑘𝑖 neighbors, and these connections remain fixed, reflecting the 
stable nature of social ties in confined living environments. The move-
ment of agents between adjacent subpopulations is governed by the 
weighted flow matrix 𝑊 , where 𝑊𝑖𝑗 indicates the connection strength 
between nodes 𝑖 and 𝑗. In practical scenarios, such as transportation 
networks, 𝑊𝑖𝑗 corresponds to the transportation throughput of routes 
connecting different cities.

2.1. Model description of movement–interaction–return patterns in metapop-
ulations

We construct the metapopulation model using the MMCA, which 
allows for a detailed representation of epidemic dynamics at the node 
level. This approach was initially introduced by Gómez-Gardenes in 
2018 in the context of disease transmission dynamics, highlighting 
the influence of recurrent mobility patterns on reaction–diffusion pro-
cesses in networks [27]. The proposed model follows the process of 
Movement–Interaction–Return (MIR) patterns [28], which models the 
dynamic stages of movement, interaction, and return, capturing the 
recurrent patterns of human commuting behavior more effectively.

(1) Movement: At each time step, the migration pattern between 
different patches is determined by the mobility rate matrix 𝐶. The prob-
ability that an individual moves from their current location 𝑖 to patch 
𝑗, with the mobility probability 𝑝, is proportional to the connection 
weight of elements 𝑊𝑖𝑗 in the weighted flows matrix 𝑊 , defined as 

𝐶𝑖𝑗 =
𝑊𝑖𝑗

∑𝑁
𝑗=1 𝑊𝑖𝑗

. (1)

Consequently, a fraction 𝑛𝑖𝑝 of agents from patch 𝑖 will move to other 
patches, while the remaining 𝑛𝑖(1 − 𝑝) agents will stay at their current 
location.

(2) Interaction: Upon completing the movement process, agents 
engage in interactions within their new subpopulation. Susceptible 
individuals have a probability 𝛽 to become infected through contacting 
with an infected individual, while infected individuals recover at a rate 
𝜇, returning to the susceptible state.

(3) Return: After the dynamical state update based on the epidemic 
model, each agent returns to its original patch and another reaction 
begins.

Based on the assumptions above, we employ the classical SIS model 
to describe the transmission of the disease within the metapopulation 
network. Specifically, a susceptible individual has a probability 𝛽 of 
becoming infected upon contact with a contagious agent, while an 
infected individual will recover with a probability 𝜇 at the start of a 
time step and return to being susceptible.

Let 𝜌𝑖(𝑡) denote the proportion of infected individuals in patch 𝑖 at 
time step 𝑡. The time evolution of 𝜌𝑖(𝑡) is governed by 

𝜌𝑖(𝑡 + 1) = (1 − 𝜇)𝜌𝑖(𝑡) + (1 − 𝜌𝑖(𝑡))𝛱𝑖(𝑡). (2)

Eq. (2) can be interpreted as the proportion of infected individuals 
in patch 𝑖 at time 𝑡 + 1. The first term on the right-hand side accounts 
for individuals who remain infected at time 𝑡 but have not recovered. 
The second term represents the newly infected individuals associated 
to patch 𝑖 during the current time step, determined by the infection 
probability 𝛱 (𝑡), which is given by
𝑖
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Fig. 1. Epidemic spreading in the heterogeneous metapopulation network with recurrent mobility patterns. In the metapopulation network, each node represents a 
subpopulation or patch. Green circles represent residential locations (homes), while orange squares represent destination locations. In the subpopulation part of the illustration, 
solid squares indicate individuals interacting under a well-mixed approximation in destinations, and in homes, solid circles indicate epidemic spreading is driven by social contacts. 
The proportion of individuals in subpopulation 𝑖 moving to subpopulation 𝑗 depends on the weighted directed flow 𝐶𝑖𝑗 . Infection takes place in all the patches independently. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝛱𝑖(𝑡) = (1 − 𝑝)𝑃𝑖(𝑡) + 𝑝
𝑁
∑

𝑗=1
𝐶𝑖𝑗𝑃𝑗 (𝑡). (3)

To further refine 𝑃𝑖(𝑡), the infection probability in (but not nec-
essarily associated with) patch 𝑖 at time 𝑡, we consider the distinct 
roles of homes and destinations. Fig.  1 illustrates an example of the 
metapopulation network for epidemic propagation in our model. On 
the metapopulation level (shown on the left-hand side), residential 
locations (homes), depicted by green circles, represent static social 
contact networks similar to Erdős-Rényi networks. In contrast, desti-
nation locations are assumed to be well-mixed and can be modeled as 
complete graphs. On the right-hand side of the figure, we show the 
movement between patch 𝑖 and patch 𝑗, governed by the probability 
matrix 𝐶.

We denote the infection probabilities in homes and destinations 
as 𝑅𝑖(𝑡) and 𝐷𝑖(𝑡), respectively. In real-world scenarios, each patch 
can serve as both a home and a destination, with no clear distinction 
between them. To account for this, we introduce an activity coef-
ficient 𝛼 with 0 ≤ 𝛼 ≤ 1 to denote the proportion of homes in 
the metapopulation network, and 1 − 𝛼 represents the proportion of 
destinations. Importantly, a lower 𝛼 value indicates higher activity, as 
it suggests that more individuals are at destinations (e.g., workplaces) 
where interactions are more frequent.

Thus, an individual will be infected at time 𝑡 in its own subpopula-
tion 𝑖 with the infection probability: 
𝑃𝑖(𝑡) = 𝛼𝑅𝑖(𝑡) + (1 − 𝛼)𝐷𝑖(𝑡), (4)

where the first term represents the infection probability when patch 𝑖
functions as a home, and the second term corresponds to the infection 
probability when patch 𝑖 serves as a destination. This formulation 
allows us to capture the varying activity levels of subpopulations, 
with 𝛼 = 0 reflecting maximum activity in destinations and 𝛼 = 1
representing minimum activity in the limit condition.

2.2. Infection probabilities regarding two types of locations

In general, the probability that a susceptible individual becomes 
infected after contact with 𝑘 contagious agents in a single network can 
be written as 
𝑃 (𝑘) = 1 − (1 − 𝛽)𝑘, (5)

where 𝛽 denotes the infection probability.
Given the assumption that individuals at the destination 𝑖 are homo-

geneously mixed, such that each individual interacts with every other 
3

individual within the area, the infection probability for susceptible 
individuals at this destination can be expressed as 

𝐷𝑖(𝑡) = 1 −
𝑁
∏

𝑗=1
(1 − 𝛽)𝑛𝑗→𝑖𝜌𝑗 (𝑡)

= 1 − (1 − 𝛽)
∑𝑁

𝑗=1 𝑛𝑗→𝑖𝜌𝑗 (𝑡),

(6)

where the exponent on the right hand represents the total number of 
infected individuals coming from all neighboring patches to destination 
𝑗. Here, 𝑛𝑗→𝑖 is the number of individuals moving from node 𝑗 to 
destination 𝑖, denoted as 
𝑛𝑗→𝑖 = (1 − 𝑝)𝑛𝑖𝛿𝑖𝑗 + 𝑝𝐶𝑗𝑖𝑛𝑗 , (7)

where 𝛿𝑖𝑗 = 1 when 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 otherwise.
For individuals in home 𝑖, we begin by calculating the average 

number of internal neighbors when 𝑛𝑖𝑝 individuals leave. Given that 
each individual has an average of 𝑘𝑖 contact edges, the number of 
internal neighbors remaining when 𝑛𝑖𝑝 individuals depart is 

𝑁(𝑖, remained) =
𝑘𝑖
𝑛𝑖
𝑛𝑖(1 − 𝑝) = 𝑘𝑖(1 − 𝑝), (8)

where 𝑛𝑖(1 − 𝑝) is the number of individuals staying in the home, and 
self-loops are not considered in the contact network.

Assuming that the pathogen is uniformly distributed among the pop-
ulation, the total number of infected neighbors for each node becomes 

𝑁(𝑖, infected) = (1 − 𝑝)𝑘𝑖𝜌𝑖(𝑡) + 𝑝
𝑁
∑

𝑗=1
𝐶𝑗𝑖𝑘𝑗𝜌𝑗 (𝑡), (9)

where the first term accounts for infected neighbors remaining in the 
home, and the second term represents those coming from neighboring 
areas.

Thus, the probability that a susceptible individual in home 𝑖 gets 
infected is 
𝑅𝑖(𝑡) = 1 − (1 − 𝛽)(1−𝑝)𝑘𝑖𝜌𝑖(𝑡)+𝑝

∑𝑁
𝑗=1 𝐶𝑗𝑖𝑘𝑗𝜌𝑗 (𝑡). (10)

To be more standardized, we introduce 𝑘𝑗→𝑖 to denote the number 
of neighbors from subpopulation 𝑗 interacting with residents of 𝑖
𝑘𝑗→𝑖 = (1 − 𝑝)𝑘𝑖𝛿𝑖𝑗 + 𝑝𝐶𝑗𝑖𝑘𝑗 . (11)

Combining Eqs. (10) and (11), the probability that a susceptible 
individual in home 𝑖 becomes infected is 
𝑅𝑖(𝑡) = 1 − (1 − 𝛽)

∑𝑁
𝑗=1 𝑘𝑗→𝑖𝜌𝑗 (𝑡). (12)
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2.3. Theoretical derivation of the epidemic threshold

In this section, we derive the epidemic threshold using Markov 
equations, which are essential for comprehending disease transmis-
sion dynamics in structured populations, particularly when considering 
human mobility between homes and workplaces. Within the metapopu-
lation network framework with recurrent mobility patterns, our goal is 
to determine the critical infection rate that enables epidemic spreading. 
This derivation accounts for two key location types, homes and desti-
nations, and captures the interactions between individuals within these 
locations, offering a more detailed understanding of the spreading. 
Finally, the largest eigenvalue of the matrix is employed to calculate 
the epidemic threshold for the SIS model, as presented in Theorem  1.

Theorem 1.  For the classic SIS epidemic model, the epidemic threshold 
considering two types of locations in the metapopulation network with 
recurrent mobility is 𝛽𝑐 = 𝜇

𝜆𝑚𝑎𝑥(𝐌) , where 𝜆𝑚𝑎𝑥(𝐌) is the largest eigenvalue 
of matrix 𝐌, 𝐌 = (𝐦𝑖𝑗 )𝑁×𝑁 = 𝛼𝐌𝑎+(1−𝛼)𝐌𝑏, 𝐦𝑎

𝑖𝑗 = (1−𝑝2)𝛿𝑖𝑗𝑘𝑗 +𝑝(1−
𝑝)𝑘𝑗 (𝐶 + 𝐶𝑇 )𝑖𝑗 + 𝑝2𝑘𝑗 (𝐶 ⋅ 𝐶𝑇 )𝑖𝑗 and 𝐦𝑏

𝑖𝑗 = (1 − 𝑝2)𝛿𝑖𝑗𝑛𝑗 + 𝑝(1 − 𝑝)𝑛𝑗 (𝐶 +
𝐶𝑇 )𝑖𝑗 + 𝑝2𝑛𝑗 (𝐶 ⋅ 𝐶𝑇 )𝑖𝑗 .

Proof.  When epidemic spreading reaches a steady state (𝑡 → +∞), we 
can get the evolution with 𝜌𝑖(𝑡 + 1) = 𝜌𝑖(𝑡) = 𝜌𝑖. Under the assumption 
that near the critical onset of the epidemics, the fraction of infected 
individuals is negligible, we can substitute 𝜌𝑖 = 𝜖𝑖 ≪ 1. Eq. (2) then 
reads 
𝜖𝑖 = 𝜖𝑖(1 − 𝜇) + (1 − 𝜖𝑖)𝛱𝑖. (13)

Substituting 𝛱𝑖 and 𝑃𝑖 according to expressions in Eqs.  (3) and (4), 
we get 

𝜖𝑖 = 𝜖𝑖(1 − 𝜇) + (1 − 𝜖𝑖)[(1 − 𝑝)𝑃𝑖 + 𝑝
𝑁
∑

𝑗=1
𝐶𝑖𝑗𝑃𝑗 ], (14)

where 
𝑃𝑖 = 𝛼𝑅𝑖 + (1 − 𝛼)𝐷𝑖

= 𝛼[1 − (1 − 𝛽)
∑𝑁

𝑗=1 𝑘𝑗→𝑖𝜖𝑗 ]+

(1 − 𝛼)[1 − (1 − 𝛽)
∑𝑁

𝑗=1 𝑛𝑗→𝑖𝜖𝑗 ].

(15)

Then we say that 𝜖𝑖 is small enough and apply the approximations 
(1 − 𝜖𝑖)𝑛 ≈ 1 − 𝑛𝜖𝑖. Neglecting the second-order terms of 𝜖𝑖 and 
substituting 𝑃𝑖, 𝑛𝑗→𝑖 and 𝑘𝑗→𝑖 by their respective expressions in Eqs. (4), 
(7), (11), it follows that 

𝛱𝑖 =(1 − 𝑝)

[

𝛼𝛽
𝑁
∑

𝑗=1
𝜖𝑗
(

(1 − 𝑝)𝑘𝑗𝛿𝑖𝑗 + 𝑝𝐶𝑗𝑖𝑘𝑗
)

+ (1 − 𝛼)𝛽
𝑁
∑

𝑗=1
𝜖𝑗
(

(1 − 𝑝)𝑛𝑗𝛿𝑖𝑗 + 𝑝𝐶𝑗𝑖𝑛𝑗
)

]

+ 𝑝
𝑁
∑

𝑗=1
𝐶𝑖𝑗

[

𝛼𝛽
𝑁
∑

𝑙=1
𝜖𝑙
(

(1 − 𝑝)𝑘𝑙𝛿𝑗𝑙 + 𝑝𝐶𝑙𝑗𝑘𝑙
)

+ (1 − 𝛼)𝛽
𝑁
∑

𝑙=1
𝜖𝑙
(

(1 − 𝑝)𝑛𝑙𝛿𝑗𝑙 + 𝑝𝐶𝑙𝑗𝑛𝑙
)

]

.

(16)

Additionally, the following equation ∑𝑁
𝑙=1 𝜖𝑙𝑘𝑙𝛿𝑗𝑙 = 𝜖𝑗𝑘𝑗 has been 

used and substitute in Eq. (13), we further obtain 
𝜇𝜖𝑖 = 𝛽

[

𝛼(𝐌𝑎𝜖)𝑖 + (1 − 𝛼)(𝐌𝑏𝜖)𝑖
]

, (17)

where the entries of matrix 𝐌𝑎 read 
𝐦𝑎

𝑖𝑗 = (1 − 𝑝2)𝛿𝑖𝑗𝑘𝑗 + 𝑝(1 − 𝑝)𝑘𝑗 (𝐶 + 𝐶𝑇 )𝑖𝑗+

𝑝2𝑘𝑗 (𝐶 ⋅ 𝐶𝑇 )𝑖𝑗 ,
(18)

and the entries of matrix 𝐌𝑏 are 
𝐦𝑏

𝑖𝑗 = (1 − 𝑝2)𝛿𝑖𝑗𝑛𝑗 + 𝑝(1 − 𝑝)𝑛𝑗 (𝐶 + 𝐶𝑇 )𝑖𝑗
2 𝑇

(19)
4

+ 𝑝 𝑛𝑗 (𝐶 ⋅ 𝐶 )𝑖𝑗 .
Denoting 𝐌 = 𝛼𝐌𝑎 + (1 − 𝛼)𝐌𝑏, Eq. (17) can be rewritten as 
𝜇
𝛽
𝜖𝑖 =

(

𝐌𝜖
)

𝑖 . (20)

Thus, the epidemic threshold can be obtained by 
𝛽𝑐 =

𝜇
𝜆𝑚𝑎𝑥(𝐌)

, (21)

where 𝜆𝑚𝑎𝑥(𝑀) is the largest eigenvalue of matrix 𝐌. Whether the 
infection process occurs at a residential or destination location, each 
entry 𝐦𝑖𝑗 signifies the entire number of interactions between an in-
dividual at node 𝑖 and all individuals connected with node 𝑗. More 
specifically, Eq. (18) denotes the overall average number of contacts 
within the same home, while Eq. (19) represents the average number 
of interactions at the destination. □

Remark 1.  In the case of 𝛼 = 0, the infection process is confined to a 
single metapopulation network in which interactions within all subpop-
ulations follow a well-mixed approximation. Therefore, we obtain the 
epidemic threshold 𝛽𝑐 = 𝜇

𝜆𝑚𝑎𝑥(𝐌) , where each element 𝐦𝑖𝑗 of matrix 𝐌
can be replaced by 𝐦𝑖𝑗 = (1−𝑝2)𝛿𝑖𝑗𝑛𝑗+𝑝(1−𝑝)𝑛𝑗 (𝐶+𝐶𝑇 )𝑖𝑗+𝑝2𝑛𝑗 (𝐶 ⋅𝐶𝑇 )𝑖𝑗 .

3. Numerical results

To systematically validate the effectiveness of our model in small-
scale communities, we conducted extensive simulation experiments on 
metapopulation networks consisting of 𝑁 = 50 subpopulations. The 
number of agents within each patch follows a random distribution 
between 50 and 150, resulting in an average total of 5000 agents across 
the entire metapopulation network after over 100 repeated simulations.

In our experiments, we consider two distinct metapopulation net-
works: the Watts–Strogatz Small-World (WS) network and the Barabási–
Albert (BA) network. Given the significant influence of contact net-
work topology on disease transmission within the patches [23,26], 
we assume a well-mixed network structure for destinations, where 
individuals interact more frequently. For patches referred to as homes, 
we employ Erdős-Rényi (ER) networks as the social contact networks, 
which exhibit a degree distribution following a Poisson distribution 
when the mobility probability 𝑝 is small. To ensure consistency between 
the two network structures, we maintain the average degree of two 
different types of network structures nearly identical (e.g., ⟨𝑘⟩ = 10). 
Moreover, a key factor is the migration matrix 𝐶, which governs the 
probability of individuals moving between subpopulations. The ele-
ments 𝐶𝑖𝑗 represent the probability that an individual in subpopulation 
𝑖 will move to a neighboring subpopulation 𝑗, with values ranging from 
0 to 1. The weight matrix 𝑊  is designed to reflect the connectivity 
between communities, with higher values indicating stronger migration 
links between subpopulations. The numerical results of the proposed 
model are derived using Markov equations and evaluated through 
Monte Carlo (MC) simulations.

The experiments for the proposed model begin with 1% of infected 
individuals in each patch, which is also applied in the MC simulations 
unless otherwise specified. When the system reaches equilibrium after 
500 time steps, we compute the average results over 100 simulations 
to ensure the accuracy of the experiments and eliminate the influence 
of randomness.

3.1. Comparison between theoretical results and Monte Carlo simulations

Firstly, we compare the theoretical results obtained by the MMCA 
method with the MC simulations, as shown in Fig.  2. We show the 
proportion of infected individuals 𝜌 in the steady state of the entire 
metapopulation network as a function of infection density 𝛽, for three 
distinct mobility probabilities 𝑝 = 0.3, 0.6, and 0.9. Theoretical curves 
are represented by solid lines, while different markers indicate the MC 
simulation results, with epidemic thresholds marked by dashed vertical 
lines based on Eq. (21). This setup includes 30 residential nodes and 20 
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Fig. 2.  Comparison of the theoretical results with the Monte Carlo simulations for Watts–Strogatz network and Barabási–Albert network. The proportion of infected 
individuals 𝜌 in the steady state as a function of infection rate 𝛽 for three values of the mobility probabilities in two types of networks. Solid lines represent the results of the 
proposed model, dashed vertical lines denote the epidemic threshold obtained through Eq. (21) and the symbols are average results calculated by Monte Carlo Method through 50 
simulations. For each graph, there are a total of 5000 individuals in 50 locations. The activity coefficient is set to 𝛼 = 0.6. The recovery rate is set to 𝜇 = 0.1. (a) Watts–Strogatz 
network. (b) Barabási–Albert network.
Fig. 3.  Final infection density changes with sets of mobility probability and infection rate under different structures of networks. The heatmaps show the final infection 
density obtained through theoretical analysis, while the white dashed lines represent the epidemic thresholds from Monte Carlo simulations. The experiment consists of 5000 
individuals distributed across 50 patches, with the recovery rate 𝜇 = 0.1 and the active coefficient 𝛼 = 0.6. (a) Watts–Strogatz network. (b) Barabási–Albert network.
destination nodes within the metapopulation, governed by an activity 
coefficient 𝛼 = 0.6.

The results indicate that for lower infection rates 𝛽, a slight dis-
crepancy emerges between the analytical predictions and simulation 
results, with the MC outcomes for both WS and BA networks being 
marginally lower than the theoretical expectations. Additionally, the 
BA network exhibits a more pronounced difference in epidemic thresh-
olds for different mobility probabilities, evidenced by the larger gaps 
between curves in Fig.  2(b). For sufficiently large infection rates 𝛽, the 
theoretical results are in good correspondence with the Monte Carlo 
simulations in the steady state. As the mobility probability 𝑝 increases, 
the epidemic threshold derived from theoretical analysis progressively 
decreases relative to the threshold obtained from Eq. (21) for both 
network structures. Furthermore, comparing Figs.  2(a) and 2(b), it is 
evident that for the same mobility probability and infection rate, the 
epidemic threshold is lower in the BA network than in the WS network. 
This can be attributed to the heterogeneity in the degree distribution 
of BA network, which results in a higher maximum eigenvalue, thereby 
increasing the likelihood of an outbreak in the power-law network 
structure.
5

3.2. Effect of mobility probability and infection rate on final infection 
density

To further explore the impact of mobility probability 𝑝 and infection 
rate 𝛽 on the final infection density 𝜌𝐼 (∞) and epidemic threshold, we 
accomplish a series of experiments by setting a range of values for 𝛽
and 𝑝 in Watts–Strogatz and Barabási–Albert metapopulation networks, 
respectively. As reported in Fig.  3, the results indicate that irrespective 
of the mobility probability 𝑝, the disease will propagate and reach a 
steady state when the infection rate 𝛽 exceeds a critical value. Notably, 
increased mobility probability accelerates disease spreading, resulting 
in a lower epidemic threshold. Comparing the white dashed lines 
between Figs.  3(a) and 3(b), which display the epidemic thresholds 
obtained from MC simulations, we observe that the epidemic threshold 
decreases more rapidly in the BA network than that in the WS network. 
It is the same conclusion as we get in Fig.  2. However, this difference 
becomes negligible as the experimental scale increases in our expanded 
simulations, with more connections, patches, and a larger population 
within each patch.
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Fig. 4.  Comparison of epidemic thresholds 𝛽𝑐 with mobility probabilities 𝑝 for different values of 𝛼. Each curve shows the trend of 𝛽𝑐 as a function of 𝑝 across varying 
values of 𝛼, indicating different ratios of home to destination sites. The red dashed lines mark the critical value of 𝑝 at which the epidemic threshold is minimized, as derived 
from Eq. (21). The simulation includes 5000 individuals distributed across 50 patches, with a recovery rate 𝜇 = 0.1. (a) Watts–Strogatz network. (b) Barabási–Albert network. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5.  Evolution of the number of infected individuals for different infection rates 𝛽 and average contact degrees ⟨𝑘⟩ varying over time. There are 5000 individuals in 
50 patches, with recovery rate 𝜇 = 0.1, 𝛼 = 0.6, and an initial number of 250 infected individuals. The mobility probability is set to 𝑝 = 0.6, and the simulations are run for 500 
time steps. Each curve is averaged over 20 MC simulation runs for each combination of 𝛽 and ⟨𝑘⟩. (a) Watts–Strogatz network. (b) Barabási–Albert network.
3.3. Impact of mobility and activity coefficient on epidemic threshold

In this subsection, we explore the impact of mobility probability 𝑝
and activity coefficient 𝛼 on the epidemic threshold 𝛽𝑐 , examining how 
variations in different types of locations influence disease transmission 
dynamics. Individuals are assumed to engage in lower social activity 
within residential areas but become more active in destinations where 
daily interactions occur. By adjusting the proportion of time spent at 
homes versus destinations, represented by the parameter 𝛼, we aim to 
capture the effects of heterogeneous population structures on disease 
spreading. Fig.  4 presents the relationship between epidemic threshold 
𝛽𝑐 , mobility probability 𝑝, and activity coefficient 𝛼 in both WS and BA 
networks. Each curve in the figure represents the epidemic threshold 
trend for different values of 𝛼 (0.4, 0.5, and 0.6), reflecting three 
scenarios with varying proportions of homes and destinations.

From Fig.  4, we observe that a lower 𝛼 value corresponds to a 
reduced epidemic threshold 𝛽𝑐 , with the minimum threshold occurring 
when the number of destination sites exceeds that of homes (𝑅 < 𝐷), 
represented by 𝛼 = 0.4. Conversely, the highest thresholds are observed 
when 𝛼 = 0.6 (𝑅 > 𝐷). For small mobility probabilities 𝑝 between 
0.01 and 0.1, 𝛽𝑐 decreases almost linearly in both WS and BA networks. 
However, as 𝑝 exceeds 0.1, we identify a critical value of 𝑝, indicated by 
the red dashed line, where 𝛽𝑐 reaches its minimum and subsequently 
increases as mobility continues to rise. This non-monotonic behavior 
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indicates a counterintuitive finding that higher mobility, beyond a 
certain threshold, can reduce the risk of epidemic spreading. Simi-
lar phenomena are also concluded in [27,30]. Furthermore, epidemic 
thresholds in the BA network are generally lower than those in the WS 
network.

3.4. Effect of infection rate and average contact degree on epidemic spread-
ing

In the last simulation, we investigate the impact of the degree 
distribution of social contact networks in homes on epidemic spread-
ing. Fig.  5 illustrates the evolution of the total number of infected 
individuals over time for various infection rates 𝛽 and average contact 
degrees ⟨𝑘⟩. Regardless of the average degree of the contact network, 
the epidemic dies out exponentially when 𝛽 < 𝛽𝑐 , but spreads through 
the metapopulation network when 𝛽 ≥ 𝛽𝑐 . We can also conclude 
that, for the same infection rate, such as 𝛽𝑐 = 1.2 and 𝛽𝑐 = 2.0, 
the infection increases as the average contact degree increases. Both 
the speed of disease transmission and the total number of infected 
individuals are positively correlated with ⟨𝑘⟩, as shown in Fig.  5. This 
relationship can be attributed to the increased contact frequency, which 
reduces the heterogeneity of social interactions and makes the disease 
transmission more similar to homogeneous mixing. Additionally, for a 
fixed threshold, the number of infected individuals in the steady state 



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 195 (2025) 116273Y. Li et al.
is higher in the BA networks than in the WS networks. This result 
is consistent with previous simulations, where the proposed model 
demonstrated that epidemics spreading more rapidly and extensively 
in scale-free networks like the BA network, leading to a larger overall 
scale of infection.

4. Conclusion

In this paper, we introduce a heterogeneous metapopulation model 
that incorporates recurrent mobility patterns within confined areas, 
capturing the dual roles of homes and destinations in disease trans-
mission. Homes are represented as structured social contact networks 
where individuals interact locally, while destinations are modeled with 
a well-mixed approximation to account for more active social inter-
actions. Using the MMCA, we analyze epidemic dynamics within this 
framework and derive the epidemic threshold in the steady state. We 
conduct extensive simulations on WS and BA networks, comparing 
theoretical predictions with MC simulations. Our findings reveal a 
strong alignment between theoretical and simulation results, with the 
BA network exhibiting a lower epidemic threshold and faster disease 
spreading than the WS network under similar conditions. Additionally, 
we identify a non-monotonic relationship between mobility probability 
and the epidemic threshold, indicating that mobility may exacerbate 
epidemic spreading beyond a critical value. Our analysis also demon-
strates that when the infection rate is below the epidemic threshold, the 
disease consistently dies out, irrespective of network topology. In sum-
mary, the proposed metapopulation model enhances our understanding 
of disease spreading driven by human mobility in restricted environ-
ments. Its flexibility in accommodating heterogeneous networks with 
varied population sizes, weighted connections, and diverse structural 
configurations makes it a valuable tool for investigating epidemic pro-
cesses in real-world settings and offers practical insights for designing 
interventions in public health and epidemic control.

Nonetheless, there remain limitations that require further explo-
ration. Our model assumes a constant mobility rate for individuals and 
does not account for public awareness or behavioral adjustments, which 
could be influenced by factors such as age, gender, and geographic 
location. Additionally, analyzing social connections and interaction 
patterns within each subpopulation in greater detail poses considerable 
challenges. Future studies will aim to address these limitations by 
incorporating more complex mobility behaviors and social dynamics 
into the model.
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