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The structure of heterogeneous networks and human mobility patterns profoundly influence the spreading
of endemic diseases. In small-scale communities, individuals engage in social interactions within confined
environments, such as homes and workplaces, where daily routines facilitate virus transmission through
predictable mobility pathways. Here, we introduce a metapopulation model grounded in a Microscopic Markov
Chain Approach to simulate susceptible-infected-susceptible dynamics within structured populations. There

are two primary types of nodes, homes and destinations, where individuals interact and transmit infections
through recurrent mobility patterns. We derive analytical expressions for the epidemic threshold and validate
our theoretical findings through comparative simulations on Watts-Strogatz and Barabasi—Albert networks. The
experimental results reveal a nonlinear relationship between mobility probability and the epidemic threshold,
indicating that further increases can inhibit disease transmission beyond a certain critical mobility level.

1. Introduction

In recent years, the increasing importance of human mobility has
played a critical role in the dynamic spreading of infectious diseases,
particularly in small-scale communities where individuals follow rou-
tine movement patterns [1-6]. The distinctive structures of social net-
works and the recurrent mobility patterns of individuals are closely
intertwined with the spatiotemporal dynamics of epidemics [7-11].
Throughout history, epidemics such as the Black Death [12] were pri-
marily propagated along specific trade routes or confined urban areas,
which made the spatial and temporal spreading of diseases somewhat
predictable. However, with the acceleration of economic globaliza-
tion and expansion of transportation networks, epidemics nowadays
exhibit characteristics of rapid dissemination and broader geographic
reach [13-15]. The COVID-19 pandemic exemplified this phenomenon
by simultaneously manifesting infection cases across multiple regions
worldwide [16,17]. Compared to previous centuries, the scale and
speed of epidemic propagation have changed dramatically. The study
of the spatial propagation of pathogens through the reaction-diffusion
process has gained extensive application [18-20]. In the context of
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the complex networks, the reaction phase represents the transmis-
sion of pathogens within a subpopulation or a patch through direct
contact, while the diffusion phase corresponds to the movement of
infected hosts across different subpopulations via connected pathways
or transportation links [21].

The study of disease transmission dynamics within reaction—
diffusion systems is commonly referred to as the metapopulation model
[22-24]. The nodes of the metapopulation network represent popula-
tion groups, while the links signify the migration of individuals between
different patches. Initially introduced by Richard Levins [25] in the
field of population biology, Anderson and May [26] were the first to
apply the metapopulation concept to the SIR model in epidemiological
studies, offering an effective framework for investigating spatial dis-
ease transmission. To gain a deeper understanding of the micro-scale
transmission processes of diseases within local communities and the
long-distance spreading of diseases due to human mobility, a series
of metapopulation models based on the microscopic Markov chain
approach have been employed [27,28]. These models implement the
dynamic process which involves movement-interaction-return (MIR)
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three stages. At the start of each time step, individuals either remain
stationary or move to neighboring patches with a certain probability,
followed by interactions and the spreading of the virus within each
patch, and finally, return to their original locations to initiate the next
cycle.

While metapopulation models proved to be valuable in simulat-
ing recurrent human mobility patterns, many existing models assume
that interactions are homogeneous mixing within communities, which
oversimplifies the complex, heterogeneous nature of human contact
patterns [29]. In reality, human social interactions are highly structured
and unique, depending on both home and workplace environments.

In addition to models focusing on single network dynamics, re-
cent research has explored structured population network models that
account for the interplay between human mobility and social con-
tacts [30-32]. Examples include heterogeneous social contact net-
works [33], bipartite networks distinguishing between daytime and
nighttime infections [34], and models linking homes and public spaces
in a bipartite structure [35]. However, the conventional assumption
that nodes with similar attributes exhibit identical statistical properties
fails to capture the heterogeneity of human environments and the
cyclical nature of commuting patterns, thus addressing the relationships
between these factors and the evolving dynamics of pandemics as an
open challenge [36].

Building on these assumptions, in this work we utilize a Micro-
scopic Markov Chain Approach (MMCA) to simulate the Susceptible—
Infected-Susceptible (SIS) epidemic dynamics in structured heteroge-
neous populations characterized by recurrent mobility patterns. The
network consists of two types of nodes: homes (e.g., hotels, dormito-
ries), where individuals interact based on social ties, and destinations
(e.g., workplaces, offices) where interactions are assumed to follow
a well-mixed approximation. At each time step, individuals migrate
between these two patch types following recurrent movement patterns,
and infections occur via different interaction modes depending on the
location. The goal of this paper is to investigate how heterogeneous
network structures and key factors such as mobility probability influ-
ence disease transmission. We provide a detailed description of the
heterogeneous structured networks with recurrent mobility patterns
and analytically derive the epidemic threshold, offering insights into
the dynamics of epidemic spreading within small-scale communities.

The rest of the paper is presented as follows: In Section 2, we
introduce the formulation of our model by Markovian equations in
constrained areas with recurrent mobility patterns. Subsequently, we
describe the detailed infection dynamics at two different types of loca-
tions and derive the epidemic threshold. We conduct simulations and
analyze the experimental results in Section 3. Finally, we summarize
the discussion and findings in Section 4.

2. Epidemic spreading in structured populations under recurrent
mobility patterns

In our metapopulation model for epidemic spreading in structured
populations, we consider N subpopulations, each comprising two types
of locations: destinations and homes. Each subpopulation i has a pop-
ulation of n; agents. In this framework, each node in the network
represents a subpopulation (or patch) with varying population sizes.
Destinations, such as workplaces or shopping centers, serve as interac-
tion hubs where individuals engage in regular and frequent activities,
and we model these interactions using a well-mixed approximation. In
contrast to previous studies [34,35] that assumed homogeneous sub-
populations, we propose that interactions within homes are more con-
strained, occurring within personal social networks where individuals
can only be infected by their immediate neighbors.

An important assumption in our model is that agents maintain
their inherent social attributes, such as their degree of connectivity,
when migrating to another subpopulation. Specifically, agents with a
social connectivity of k (i.e., k neighbors) retain this same connectivity
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even after moving to a different community. This assumption helps
explain the phenomenon of super-spreaders—individuals with higher-
than-average contact rates due to their biological and behavioral traits,
leading to a disproportionately high number of infections [37]. Their
elevated contact rates, driven by unique social behaviors, contribute
significantly to the rapid spread of infections.

Building on this, each individual in home i interacts with approxi-
mately k; neighbors, and these connections remain fixed, reflecting the
stable nature of social ties in confined living environments. The move-
ment of agents between adjacent subpopulations is governed by the
weighted flow matrix W, where W;; indicates the connection strength
between nodes i and ;. In practical scenarios, such as transportation
networks, W;; corresponds to the transportation throughput of routes
connecting different cities.

2.1. Model description of movement-interaction—return patterns in metapop-
ulations

We construct the metapopulation model using the MMCA, which
allows for a detailed representation of epidemic dynamics at the node
level. This approach was initially introduced by G6émez-Gardenes in
2018 in the context of disease transmission dynamics, highlighting
the influence of recurrent mobility patterns on reaction—diffusion pro-
cesses in networks [27]. The proposed model follows the process of
Movement-Interaction—-Return (MIR) patterns [28], which models the
dynamic stages of movement, interaction, and return, capturing the
recurrent patterns of human commuting behavior more effectively.

(1) Movement: At each time step, the migration pattern between
different patches is determined by the mobility rate matrix C. The prob-
ability that an individual moves from their current location i to patch
Jj, with the mobility probability p, is proportional to the connection
weight of elements W;; in the weighted flows matrix W, defined as

i

Wij
Ci=—— 1)
E j=1 I/Vij
Consequently, a fraction n;p of agents from patch i will move to other
patches, while the remaining n,;(1 — p) agents will stay at their current
location.

(2) Interaction: Upon completing the movement process, agents
engage in interactions within their new subpopulation. Susceptible
individuals have a probability g to become infected through contacting
with an infected individual, while infected individuals recover at a rate
u, returning to the susceptible state.

(3) Return: After the dynamical state update based on the epidemic
model, each agent returns to its original patch and another reaction
begins.

Based on the assumptions above, we employ the classical SIS model
to describe the transmission of the disease within the metapopulation
network. Specifically, a susceptible individual has a probability g of
becoming infected upon contact with a contagious agent, while an
infected individual will recover with a probability u at the start of a
time step and return to being susceptible.

Let p;(7) denote the proportion of infected individuals in patch i at
time step ¢. The time evolution of p;() is governed by

Pt + 1) = (1= p,(0) + (1 = p,O)IT(0). @)

Eq. (2) can be interpreted as the proportion of infected individuals
in patch i at time 7 + 1. The first term on the right-hand side accounts
for individuals who remain infected at time ¢ but have not recovered.
The second term represents the newly infected individuals associated
to patch i during the current time step, determined by the infection
probability I7;(r), which is given by
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Fig. 1. Epidemic spreading in the heterogeneous metapopulation network with recurrent mobility patterns. In the metapopulation network, each node represents a
subpopulation or patch. Green circles represent residential locations (homes), while orange squares represent destination locations. In the subpopulation part of the illustration,
solid squares indicate individuals interacting under a well-mixed approximation in destinations, and in homes, solid circles indicate epidemic spreading is driven by social contacts.
The proportion of individuals in subpopulation i moving to subpopulation j depends on the weighted directed flow C;;. Infection takes place in all the patches independently.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

N
(1) = (1= pP(t)+p Y, C;; P(0). 3)
j=1

To further refine P;(¢), the infection probability in (but not nec-
essarily associated with) patch i at time 7, we consider the distinct
roles of homes and destinations. Fig. 1 illustrates an example of the
metapopulation network for epidemic propagation in our model. On
the metapopulation level (shown on the left-hand side), residential
locations (homes), depicted by green circles, represent static social
contact networks similar to Erdés-Rényi networks. In contrast, desti-
nation locations are assumed to be well-mixed and can be modeled as
complete graphs. On the right-hand side of the figure, we show the
movement between patch i and patch j, governed by the probability
matrix C.

We denote the infection probabilities in homes and destinations
as R;(r) and D,(r), respectively. In real-world scenarios, each patch
can serve as both a home and a destination, with no clear distinction
between them. To account for this, we introduce an activity coef-
ficient « with 0 < « < 1 to denote the proportion of homes in
the metapopulation network, and 1 — a represents the proportion of
destinations. Importantly, a lower a value indicates higher activity, as
it suggests that more individuals are at destinations (e.g., workplaces)
where interactions are more frequent.

Thus, an individual will be infected at time 7 in its own subpopula-
tion i with the infection probability:

P.(1) = aR,(1) + (1 — @)D, (), 4)

where the first term represents the infection probability when patch i
functions as a home, and the second term corresponds to the infection
probability when patch i serves as a destination. This formulation
allows us to capture the varying activity levels of subpopulations,
with @ = 0 reflecting maximum activity in destinations and a« = 1
representing minimum activity in the limit condition.

2.2. Infection probabilities regarding two types of locations

In general, the probability that a susceptible individual becomes
infected after contact with k contagious agents in a single network can
be written as

P(ky=1-(1-pF, 5)

where g denotes the infection probability.
Given the assumption that individuals at the destination i are homo-
geneously mixed, such that each individual interacts with every other

individual within the area, the infection probability for susceptible
individuals at this destination can be expressed as

N
D, =1- ] = pyi=ini®
,11 ®)

= 1= (1= pZim =it

where the exponent on the right hand represents the total number of
infected individuals coming from all neighboring patches to destination
Jj. Here, n;_,; is the number of individuals moving from node j to
destination i, denoted as

n;_; = (1 -pné; +pCyn, )

where §;; = 1 when i = j and §;; = 0 otherwise.

For individuals in home i, we begin by calculating the average
number of internal neighbors when n;p individuals leave. Given that
each individual has an average of k; contact edges, the number of

internal neighbors remaining when n;p individuals depart is
k;

N (i,remained) = —n,(1 — p) = k;(1 — p), (8)
n;

where n;(1 — p) is the number of individuals staying in the home, and
self-loops are not considered in the contact network.

Assuming that the pathogen is uniformly distributed among the pop-
ulation, the total number of infected neighbors for each node becomes

N
N (i, infected) = (I — p)k;p;(t) + p Z Cjikjp; (1), 9)
j=1

where the first term accounts for infected neighbors remaining in the
home, and the second term represents those coming from neighboring
areas.

Thus, the probability that a susceptible individual in home i gets
infected is

N
Ri(f) =1- (1 _ ﬂ)(l—P)kiﬂ,’(f)'HJZj:l Cj,kjpj(f)' (10)

To be more standardized, we introduce k;_,; to denote the number
of neighbors from subpopulation j interacting with residents of i

ki = (1= pk;;; + pCjik; an

Jivt

Combining Egs. (10) and (11), the probability that a susceptible
individual in home i becomes infected is

R(1) = 1 = (1 = pyZim kimiti®. (12)
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2.3. Theoretical derivation of the epidemic threshold

In this section, we derive the epidemic threshold using Markov
equations, which are essential for comprehending disease transmis-
sion dynamics in structured populations, particularly when considering
human mobility between homes and workplaces. Within the metapopu-
lation network framework with recurrent mobility patterns, our goal is
to determine the critical infection rate that enables epidemic spreading.
This derivation accounts for two key location types, homes and desti-
nations, and captures the interactions between individuals within these
locations, offering a more detailed understanding of the spreading.
Finally, the largest eigenvalue of the matrix is employed to calculate
the epidemic threshold for the SIS model, as presented in Theorem 1.

Theorem 1. For the classic SIS epidemic model, the epidemic threshold
considering two types of locations in the metapopulation network with
recurrent mobility is f, = m, where A,,,.(M) is the largest eigenvalue
of matrix M, M = (m,;) yyn = aM“ +(1 —a)M?, m, = (1-p )5,k +p(1—

Pk;(C +CT),; + p’k;(C - CT),; and ml’.’j =(1- )5 +p(1 = p)n;(C +
CT) +p*n; (c (oL

lJI

Proof. When epidemic spreading reaches a steady state (+ - +0), we
can get the evolution with p;(t + 1) = p;(t) = p;,. Under the assumption
that near the critical onset of the epidemics, the fraction of infected
individuals is negligible, we can substitute p; = ¢; < 1. Eq. (2) then
reads

e =61 —mw+1—-e)l;. 13)

Substituting II; and P, according to expressions in Egs. (3) and (4),
we get

N
& =el—w+1—e)ll=pP+p Y C;P. a4
j=1
where
P, =aR; +(1 - a)D
= a1 - (1 = HE= K= 4 s)

N
(1 =)l = (1 = pZ=1 "=,
Then we say that ¢; is small enough and apply the approximations
(1 — ¢)" =~ 1 — ne;. Neglecting the second-order terms of ¢; and
substituting P;, n;_,; and k;_,; by their respective expressions in Egs. (4),
(7), (11), it follows that

N
N
+ (1 -a)f Z ( n; 511+pC/,nj):|

N
+pY.Cy

Jj=

ae)
(1= pkdy +pCyky )

||M2

+ (1 -a)p z 61((1 —pnéj +pclj”l> :| .
=1

Additionally, the following equation Z;\; L €ki6; = €;k; has been
used and substitute in Eq. (13), we further obtain

pe; = B [aM?); + (1 - )(M"&), | , a”

where the entries of matrix M“ read

2 T

m, = (1= p)5,;k; + p(1 — pk;(C +CT), -+ s
prky(C-CT),,

and the entries of matrix M? are

m!, = (1= p")s;n; + p(1 = pn;(C +CT); 19)

+ p nj(C-C ),-j.
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Denoting M = aM? + (1 — a)M?, Eq. (17) can be rewritten as
U

—¢; = (Mé).. (20)
ﬁ ( )I

Thus, the epidemic threshold can be obtained by

po=—tr @1

lmax (M) ’

where 4,,.(M) is the largest eigenvalue of matrix M. Whether the
infection process occurs at a residential or destination location, each
entry m;; signifies the entire number of interactions between an in-
dividual at node i and all individuals connected with node j. More
specifically, Eq. (18) denotes the overall average number of contacts
within the same home, while Eq. (19) represents the average number
of interactions at the destination. []

Remark 1. In the case of a = 0, the infection process is confined to a
single metapopulation network in which interactions within all subpop-
ulations follow a well-mixed approximation. Therefore, we obtain the
epidemic threshold g, = %, where each element m;; of matrix M
can be replaced by m;; = (lm—p )8, +p(1—p)n,(C+CTY,; +p ny(C-CT),.

3. Numerical results

To systematically validate the effectiveness of our model in small-
scale communities, we conducted extensive simulation experiments on
metapopulation networks consisting of N = 50 subpopulations. The
number of agents within each patch follows a random distribution
between 50 and 150, resulting in an average total of 5000 agents across
the entire metapopulation network after over 100 repeated simulations.

In our experiments, we consider two distinct metapopulation net-
works: the Watts-Strogatz Small-World (WS) network and the Barabasi—
Albert (BA) network. Given the significant influence of contact net-
work topology on disease transmission within the patches [23,26],
we assume a well-mixed network structure for destinations, where
individuals interact more frequently. For patches referred to as homes,
we employ Erdgs-Rényi (ER) networks as the social contact networks,
which exhibit a degree distribution following a Poisson distribution
when the mobility probability p is small. To ensure consistency between
the two network structures, we maintain the average degree of two
different types of network structures nearly identical (e.g., (k) = 10).
Moreover, a key factor is the migration matrix C, which governs the
probability of individuals moving between subpopulations. The ele-
ments C;; represent the probability that an individual in subpopulation
i will move to a neighboring subpopulation j, with values ranging from
0 to 1. The weight matrix W is designed to reflect the connectivity
between communities, with higher values indicating stronger migration
links between subpopulations. The numerical results of the proposed
model are derived using Markov equations and evaluated through
Monte Carlo (MC) simulations.

The experiments for the proposed model begin with 1% of infected
individuals in each patch, which is also applied in the MC simulations
unless otherwise specified. When the system reaches equilibrium after
500 time steps, we compute the average results over 100 simulations
to ensure the accuracy of the experiments and eliminate the influence
of randomness.

3.1. Comparison between theoretical results and Monte Carlo simulations

Firstly, we compare the theoretical results obtained by the MMCA
method with the MC simulations, as shown in Fig. 2. We show the
proportion of infected individuals p in the steady state of the entire
metapopulation network as a function of infection density g, for three
distinct mobility probabilities p = 0.3, 0.6, and 0.9. Theoretical curves
are represented by solid lines, while different markers indicate the MC
simulation results, with epidemic thresholds marked by dashed vertical
lines based on Eq. (21). This setup includes 30 residential nodes and 20
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Fig. 2. Comparison of the theoretical results with the Monte Carlo simulations for Watts-Strogatz network and Barabasi-Albert network. The proportion of infected
individuals p in the steady state as a function of infection rate f for three values of the mobility probabilities in two types of networks. Solid lines represent the results of the
proposed model, dashed vertical lines denote the epidemic threshold obtained through Eq. (21) and the symbols are average results calculated by Monte Carlo Method through 50
simulations. For each graph, there are a total of 5000 individuals in 50 locations. The activity coefficient is set to a = 0.6. The recovery rate is set to x4 = 0.1. (a) Watts-Strogatz

network. (b) Barabasi—Albert network.
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Fig. 3. Final infection density changes with sets of mobility probability and infection rate under different structures of networks. The heatmaps show the final infection
density obtained through theoretical analysis, while the white dashed lines represent the epidemic thresholds from Monte Carlo simulations. The experiment consists of 5000
individuals distributed across 50 patches, with the recovery rate y = 0.1 and the active coefficient a = 0.6. (a) Watts-Strogatz network. (b) Barabasi-Albert network.

destination nodes within the metapopulation, governed by an activity
coefficient « = 0.6.

The results indicate that for lower infection rates g, a slight dis-
crepancy emerges between the analytical predictions and simulation
results, with the MC outcomes for both WS and BA networks being
marginally lower than the theoretical expectations. Additionally, the
BA network exhibits a more pronounced difference in epidemic thresh-
olds for different mobility probabilities, evidenced by the larger gaps
between curves in Fig. 2(b). For sufficiently large infection rates g, the
theoretical results are in good correspondence with the Monte Carlo
simulations in the steady state. As the mobility probability p increases,
the epidemic threshold derived from theoretical analysis progressively
decreases relative to the threshold obtained from Eq. (21) for both
network structures. Furthermore, comparing Figs. 2(a) and 2(b), it is
evident that for the same mobility probability and infection rate, the
epidemic threshold is lower in the BA network than in the WS network.
This can be attributed to the heterogeneity in the degree distribution
of BA network, which results in a higher maximum eigenvalue, thereby
increasing the likelihood of an outbreak in the power-law network
structure.

3.2. Effect of mobility probability and infection rate on final infection
density

To further explore the impact of mobility probability p and infection
rate § on the final infection density p; (c0) and epidemic threshold, we
accomplish a series of experiments by setting a range of values for g
and p in Watts-Strogatz and Barabasi—Albert metapopulation networks,
respectively. As reported in Fig. 3, the results indicate that irrespective
of the mobility probability p, the disease will propagate and reach a
steady state when the infection rate f exceeds a critical value. Notably,
increased mobility probability accelerates disease spreading, resulting
in a lower epidemic threshold. Comparing the white dashed lines
between Figs. 3(a) and 3(b), which display the epidemic thresholds
obtained from MC simulations, we observe that the epidemic threshold
decreases more rapidly in the BA network than that in the WS network.
It is the same conclusion as we get in Fig. 2. However, this difference
becomes negligible as the experimental scale increases in our expanded
simulations, with more connections, patches, and a larger population
within each patch.



Y. Li et al.

1le-03
a=0.4

2.61 —*— a=05

—v— a=0.6

2.8

2.4

"4
MR e S SCASTS

2.2

Bc

2.0

*
KKK sk Ao ARAIAE

1.8

1.6

1.4 :

(a)

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 195 (2025) 116273

28 le-03
a=0.4
2.6{ —*— a=0.5
—v— a=0.6
2.44 v — v vy, ——_, ’,v
—v—y__, v
2.2 Mg S )
S
< 2.0
' *- * Ak £
1.8 *\*\*\*‘*‘*‘*‘*&r-*t****
1.64
1.4— \
10-2 107t 10°
p
(b)

Fig. 4. Comparison of epidemic thresholds §, with mobility probabilities p for different values of a. Each curve shows the trend of g, as a function of p across varying
values of «a, indicating different ratios of home to destination sites. The red dashed lines mark the critical value of p at which the epidemic threshold is minimized, as derived
from Eq. (21). The simulation includes 5000 individuals distributed across 50 patches, with a recovery rate y = 0.1. (a) Watts-Strogatz network. (b) Barabasi-Albert network. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Evolution of the number of infected individuals for different infection rates § and average contact degrees (k) varying over time. There are 5000 individuals in
50 patches, with recovery rate y = 0.1, « = 0.6, and an initial number of 250 infected individuals. The mobility probability is set to p = 0.6, and the simulations are run for 500
time steps. Each curve is averaged over 20 MC simulation runs for each combination of g and (k). (a) Watts-Strogatz network. (b) Barabdsi—Albert network.

3.3. Impact of mobility and activity coefficient on epidemic threshold

In this subsection, we explore the impact of mobility probability p
and activity coefficient « on the epidemic threshold f,, examining how
variations in different types of locations influence disease transmission
dynamics. Individuals are assumed to engage in lower social activity
within residential areas but become more active in destinations where
daily interactions occur. By adjusting the proportion of time spent at
homes versus destinations, represented by the parameter «, we aim to
capture the effects of heterogeneous population structures on disease
spreading. Fig. 4 presents the relationship between epidemic threshold
p., mobility probability p, and activity coefficient ¢ in both WS and BA
networks. Each curve in the figure represents the epidemic threshold
trend for different values of a (0.4, 0.5, and 0.6), reflecting three
scenarios with varying proportions of homes and destinations.

From Fig. 4, we observe that a lower a value corresponds to a
reduced epidemic threshold g,, with the minimum threshold occurring
when the number of destination sites exceeds that of homes (R < D),
represented by a = 0.4. Conversely, the highest thresholds are observed
when « = 0.6 (R > D). For small mobility probabilities p between
0.01 and 0.1, g, decreases almost linearly in both WS and BA networks.
However, as p exceeds 0.1, we identify a critical value of p, indicated by
the red dashed line, where g, reaches its minimum and subsequently
increases as mobility continues to rise. This non-monotonic behavior

indicates a counterintuitive finding that higher mobility, beyond a
certain threshold, can reduce the risk of epidemic spreading. Simi-
lar phenomena are also concluded in [27,30]. Furthermore, epidemic
thresholds in the BA network are generally lower than those in the WS
network.

3.4. Effect of infection rate and average contact degree on epidemic spread-
ing

In the last simulation, we investigate the impact of the degree
distribution of social contact networks in homes on epidemic spread-
ing. Fig. 5 illustrates the evolution of the total number of infected
individuals over time for various infection rates # and average contact
degrees (k). Regardless of the average degree of the contact network,
the epidemic dies out exponentially when g < g, but spreads through
the metapopulation network when g > p.. We can also conclude
that, for the same infection rate, such as g, = 1.2 and g, = 2.0,
the infection increases as the average contact degree increases. Both
the speed of disease transmission and the total number of infected
individuals are positively correlated with (k), as shown in Fig. 5. This
relationship can be attributed to the increased contact frequency, which
reduces the heterogeneity of social interactions and makes the disease
transmission more similar to homogeneous mixing. Additionally, for a
fixed threshold, the number of infected individuals in the steady state
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is higher in the BA networks than in the WS networks. This result
is consistent with previous simulations, where the proposed model
demonstrated that epidemics spreading more rapidly and extensively
in scale-free networks like the BA network, leading to a larger overall
scale of infection.

4. Conclusion

In this paper, we introduce a heterogeneous metapopulation model
that incorporates recurrent mobility patterns within confined areas,
capturing the dual roles of homes and destinations in disease trans-
mission. Homes are represented as structured social contact networks
where individuals interact locally, while destinations are modeled with
a well-mixed approximation to account for more active social inter-
actions. Using the MMCA, we analyze epidemic dynamics within this
framework and derive the epidemic threshold in the steady state. We
conduct extensive simulations on WS and BA networks, comparing
theoretical predictions with MC simulations. Our findings reveal a
strong alignment between theoretical and simulation results, with the
BA network exhibiting a lower epidemic threshold and faster disease
spreading than the WS network under similar conditions. Additionally,
we identify a non-monotonic relationship between mobility probability
and the epidemic threshold, indicating that mobility may exacerbate
epidemic spreading beyond a critical value. Our analysis also demon-
strates that when the infection rate is below the epidemic threshold, the
disease consistently dies out, irrespective of network topology. In sum-
mary, the proposed metapopulation model enhances our understanding
of disease spreading driven by human mobility in restricted environ-
ments. Its flexibility in accommodating heterogeneous networks with
varied population sizes, weighted connections, and diverse structural
configurations makes it a valuable tool for investigating epidemic pro-
cesses in real-world settings and offers practical insights for designing
interventions in public health and epidemic control.

Nonetheless, there remain limitations that require further explo-
ration. Our model assumes a constant mobility rate for individuals and
does not account for public awareness or behavioral adjustments, which
could be influenced by factors such as age, gender, and geographic
location. Additionally, analyzing social connections and interaction
patterns within each subpopulation in greater detail poses considerable
challenges. Future studies will aim to address these limitations by
incorporating more complex mobility behaviors and social dynamics
into the model.
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