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In real-world social systems, individual interactions are frequently shaped by reputation, which not only
influences partner selection but also affects the nature and benefits of the interactions themselves. We propose
a heterogeneous game transition model that incorporates a reputation-based dynamic threshold mechanism
to investigate how reputation regulates game evolution. In our framework, individuals determine the type of
game they engage in according to their own and their neighbors’ reputation levels. In turn, the outcomes of
these interactions modify their reputations, thereby driving the adaptation and evolution of future strategies in
a feedback-informed manner. Through simulations on two representative topological structures, square lattice
and small-world networks, we find that network topology exerts a profound influence on the evolutionary
dynamics. Due to its localized connection characteristics, the square lattice network fosters the long-term
coexistence of competing strategies. In contrast, the small-world network is more susceptible to changes
in system parameters due to the efficiency of information dissemination and the sensitivity of strategy
evolution. Additionally, the reputation mechanism is significant in promoting the formation of a dominant
state of cooperation, especially in contexts of high sensitivity to reputation. Although the initial distribution
of reputation influences the early stage of the evolutionary path, it has little effect on the final steady state
of the system. Hence, we can conclude that the ultimate steady state of evolution is primarily determined by
the reputation mechanism and the network structure.

1. Introduction prisoner’s dilemma [7-9], the snowdrift game [10,11], and the stag

hunt game [12-14] are widely used to describe the conflict between

In the study of evolutionary game theory, understanding the mecha-
nism of cooperation and its maintenance conditions has been one of the
main issues that have attracted widespread attention in the academic
community [1]. Individuals often need to sacrifice their interests to
achieve the general interests of the group. Choosing cooperation seems
to violate the basic principle of “survival of the fittest” in Darwin’s
natural selection [2]. However, in the real world, whether it is a
microscopic biological system or a macroscopic human society, the
phenomenon of cooperation is always ubiquitous and plays an irre-
placeable role in the promotion of social progress and the evolution
of civilization [3,4]. As an interdisciplinary theoretical framework that
connects biology, economics, and social sciences, evolutionary game
theory was proposed to explain such phenomena and theoretically
provides a solid analytical tool and model framework for the formation
and stability of cooperation [5]. In recent years, it has also been widely
applied to the analysis of cooperation in digital economic systems and
data governance [6]. In this framework, typical models such as the
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cooperation and defection in the real world and their evolutionary
path, becoming an important basis for exploring the mechanism of
cooperation.

In the framework of traditional evolutionary game theory, the in-
troduction of spatial structure is considered as one of the important
mechanisms to promote the evolution of cooperation [15,16]. In an
early work, Nowak and May [17] pointed out that although the defec-
tion strategy has a significant evolutionary advantage, the clustering
effect caused by local interactions can effectively promote the for-
mation and maintenance of cooperation. This discovery has greatly
promoted academic research on game behavior in complex networks,
and related results generally believe that spatial structure plays a
positive role in most social dilemmas [18,19]. Zeng et al. proposed a
complex network model with power-law activating patterns, revealing
how heterogeneous interaction frequencies affect the coevolution of
structure and behavior [20]. However, subsequent studies have also
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found that spatial structure does not promote cooperation in all types
of games. For example, in the snowdrift game, spatial structure may
inhibit the spread of cooperation if imitation is applied [21]. This
observation warns us that the impact of the network topology on the
evolution of cooperation is more subtle and may depend on the specific
setting of game types and the interaction rules.

Over the years, scholars gradually realized that static network struc-
tures cannot fully capture the dynamic and heterogeneous nature of
individual interactions observed in real societies [22-24]. Feng et al.
investigated the information dynamics in evolving networks through
the lens of the birth-death process, and highlighted how the interplay
of random drift and natural selection shapes the evolution of indi-
vidual states and interaction structures [25]. These findings exemplify
a broader shift in evolutionary game research from fixed interaction
frameworks to adaptive systems in which both strategies and network
topologies evolve. In recent years, coevolutionary game theory has
gradually emerged [26], coupling the evolution of individual strate-
gies with the evolution of interaction structures [27-29], and has
become a new paradigm for understanding the evolution of cooper-
ation. Individuals not only adjust their strategies but also actively
change their interactions based on benefit feedback, such as discon-
necting from defectors and choosing new partners [30,31], thereby
dynamically reconstructing their local networks [32]. The type of co-
evolutionary mechanism [33], such as link reciprocity and structural
adaptability, has not only been theoretically proven to improve the
level of cooperation significantly but has also been widely supported
by human experiments [34,35]. More recently, the focus has extended
beyond structural dynamics to include the evolution of preference
frameworks themselves, transitioning from outcome-based models to
language-based and norm-sensitive approaches [36], thereby enriching
the theoretical foundations for understanding social decision making.

It is worth noting that the study of coevolutionary games has
gradually expanded from focusing solely on structural evolution to in-
corporating heterogeneity in individual attributes. Among these, mech-
anisms centered on reputation have attracted increasing scholarly at-
tention [37,38]. Reputation [39,40], as a cumulative reflection of an
individual’s behavioral history, influences not only the dissemination
of strategies but also the selection of interaction partners [41], thereby
shaping a dynamic and feedback-sensitive game environment. These
developments offer novel theoretical tools and simulation frameworks
for capturing the complex evolutionary pathways of cooperation in
real-world societies. In their review, Xia et al. comprehensively illus-
trated the pivotal role of reputation and reciprocity in the evolution
of cooperation [42]. They emphasized that reputation, as a record of
social conduct, governs strategic decisions while simultaneously rein-
forcing the stability and propagation of cooperation when interlinked
with direct and indirect reciprocity mechanisms. Further advancing
the line of inquiry, Hu et al. introduced an adaptive reputation model
demonstrating that, in dynamic social networks, individuals adjust their
trust levels in real-time based on interactive experiences, thereby fos-
tering more resilient cooperation structures [43]. The adaptive process
significantly enhances both the level of trust and the prevalence of
cooperation across the network. On a more theoretical level, Capraro
and Perk provided a formal foundation for modeling moral prefer-
ences, analyzing how social norms, reputation, and individual decisions
coevolve [44].

In real-world social systems, interactions between individuals do not
take place within a uniform or static game environment. Instead, they
exhibit a high degree of heterogeneity and dynamism. Su et al. sys-
tematically proposed the concept of game transitions, suggesting that
individuals may encounter different types of strategic interactions over
time, even within a single evolutionary framework [45]. The approach
fundamentally extends traditional models by allowing the payoff en-
vironment to evolve alongside strategy dynamics. Building upon this
foundation, Feng et al. further incorporated Markov processes to gov-
ern the transitions between games, providing a stochastic framework
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that captures the probabilistic and temporal characteristics of such
environmental transitions [46]. The mechanism by which games are
transformed can be driven by various factors, among which reputation
serves as a crucial social signal that influences access to cooperation
opportunities and the overall quality of interactions [47-49]. In gen-
eral, individuals with higher reputations tend to obtain more valuable
cooperation resources and are more likely to engage in high-payoff
games, while those with lower reputations are often marginalized
and engage in low-payoff or even exclusionary interactions. Building
on these observations, we propose a heterogeneous game transition
model that incorporates a dynamic reputation threshold mechanism.
In our model, individuals are dynamically classified as either high-
or low-reputation agents based on the average reputation level of the
population, which in turn determines the type of game they engage
in either a high-value or low-value game. Specifically, high-reputation
individuals participate in high-value games, while low-reputation indi-
viduals participate in low-value games. When individuals of different
reputation categories interact, game transitions occur with probability.
Furthermore, individual reputations are updated in response to their
strategies, and the feedback mechanism subsequently influences their
strategic preferences and interaction patterns in future rounds, forming
a feedback-driven evolutionary dynamic system.

Our paper is structured as follows. We first describe our model in
Section 2. It is a game transition model based on adaptive reputation
thresholds and a policy update rule based on fitness. In Section 3, we
present in detail the experimental results obtained in a wide variety of
parameter values and different network structures. Finally, in Section 4,
we summarize our research results and sketch some potential future
developments.

2. Model

In interpersonal actions, the reputation of an agent plays a crucial
role in determining the quality of the interaction. An individual’s social
evaluation not only affects his or her position in the group but also
directly determines how he or she interacts with others. In this section,
we propose a model for the evolution of the game transition based
on reputation feedback to characterize how individuals choose game
objects and game types based on their reputation values on social
networks. The model assumes that each agent is represented as a node
in the network and that the edges between nodes represent possible
interactions between agents. Each agent has a dynamically changing
reputation value and interacts with other neighbors randomly at each
time step, and the specific game-type involved is determined by the
reputation of the two interacting parties.

2.1. Game classification

In the evolutionary process, agents may participate in different
types of games, where each game requires individuals to choose be-
tween two fundamental strategies: cooperation (C) or defection (D).
This decision determines the final payoff, which depends on the specific
combination of their chosen strategies. In a given game /, two agents
make their decisions simultaneously and independently. If both agents
choose to cooperate (C,C), each will receive a payoff R, and if both
defect (D, D), each receives a lower payoff P, When one defects and
the other cooperates, the defector earns a higher payoff 7;, while the
cooperator receives a lower payoff S;.

As a baseline, when the agents’ reputations are low, the interaction
follows a classic Prisoner’s Dilemma structure, in which the payoff
values satisfy the following condition:

T, >R, > P >S5,
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Fig. 1. Reputation-based game type transition mechanism. The figure illustrates how the actual social game type between individuals is affected by their reputation status. The
model introduces an adaptive reputation threshold to dynamically divide agents into high-reputation individuals (red) and low-reputation individuals (blue). A high-value game is
played when both interacting individuals have high reputations, whereas a low-value game occurs when both have low reputations. In interactions between a high-reputation and a
low-reputation individual, the game type alternates probabilistically between these two. For specific rules and parameter settings, please refer to the main text. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

In this scenario, we assume that cooperation requires a cost ¢, but
brings potential benefits b,, which may vary with the context of the
interaction. The corresponding payoff matrix is:

by—c -—c

[ by 0]’

where the classic structure of the Prisoner’s Dilemma is retained:
mutual cooperation provides a benefit b;, while defection yields a
higher payoff to the defector at the expense of the cooperator. It
captures the fundamental social dilemma presented in many real-world
interactions, where cooperation is costly but beneficial in the long term,
and defection offers an immediate but often unsustainable advantage.

However, in many real-world social and economic systems, in-
teractions between agents are significantly influenced by reputation.
Reputation serves as a critical social signal, reflecting an agent’s history
of cooperation, social standing, or perceived trustworthiness. Agents
with higher reputations are more likely to be trusted, invited into
valuable collaborations, and given access to superior resources. In this
sense, reputation functions as a form of social capital, translating into
tangible strategic advantages.

To capture the social dynamic, we extend the baseline model by
introducing a heterogeneous, reputation-driven game. In the modified
framework, an agent’s reputation influences the payoffs they receive
in interactions. Specifically, when an agent’s reputation exceeds a
given threshold, they gain access to high-value interactions, in which
the rewards from cooperation increase with the reputations of both
participants. The latter element reflects empirical observations that
high-reputation individuals tend to engage in more beneficial and
sustained cooperation. The payoff matrix for such interactions is given
by:

[F—c —c]
r )
%” 0
where 7 denotes the average reputation of the interacting agents i
and j, reflecting their joint social standing, and rg; represents the
reputation of the agent in question. The parameter ¢ indicates the
cost of cooperation. In order to highlight the role of reputation as
a factor promoting mutual trust, we assume that when two agents
choose to cooperate, the cost of cooperation is shared equally by both
parties, thereby effectively reducing individual burdens and promoting
cooperation.

By embedding reputation directly into the payoff structure, we
capture the reputation-mediated enhancement of cooperation payoffs.

Agents with higher reputations are more likely to access superior in-
teraction opportunities and obtain greater benefits because reputation
serves as a form of social capital that influences both the likelihood
of being chosen as a partner and the expected payoff from interac-
tions. This assumption is consistent with empirical observations: high-
reputation agents tend to form more stable, productive, and mutually
beneficial relationships, supported by stronger mutual trust.

In contrast, interactions involving low-reputation agents often lack
trust and are susceptible to opportunistic behavior. Such interactions
are characterized by a lower willingness to cooperate, a higher risk of
cooperation failure, and subsequently diminished payoffs. This reputa-
tion asymmetry highlights the critical role of social trust structures in
dynamic strategic environments and illustrates how historical behavior
embodied in reputation can have profound effects on future strategies.

2.2. Reputation-based game transition

In real-world social systems, an individual’s reputation plays a
pivotal role in shaping their interaction patterns and the benefits they
can attain. Individuals with higher reputations are typically more likely
to be trusted and included in profitable cooperative endeavors, whereas
those with lower reputations may be marginalized and confined to
lower-payoff interactions. Such dynamics underscore the stratified na-
ture of social cooperation, where reputation serves as an informal
credential for access to high-value opportunities.

To capture this element in our model, we introduce an adaptive
reputation threshold 6(t), which dynamically separates high-reputation
individuals from low-reputation ones. The threshold is designed to
evolve with the population’s overall reputation level and is determined
by the average reputation at time 7, expressed as:

0(r) = avr, (7). (@)

Based on the adaptive threshold, each individual i at time 7 can be
categorized as follows:

ie {H , ri(#)> 6@ (high-reputation individual) @

L, r () <6@) (low-reputation individual).

To further refine the interaction structure, we introduce a
reputation-driven game selection mechanism that depends on the rep-
utation categories of the interacting pair (i, /). When both individuals
have high reputations, (i,j) € H x H, they engage in a high-value
game, which yields mutually beneficial outcomes with greater poten-
tial payoffs. Conversely, when both individuals have low reputations,
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(i,j) € L x L, they participate in a low-value game, where cooperation
is limited and payoffs are modest. In mixed-reputation pairings, (i, j) €
HXxLULxH, the game type is determined probabilistically: a high-value
game occurs with probability p, and a low-value game with probability
1 — p. The stochastic mechanism captures the asymmetry of real-world
interactions. Namely, high-reputation individuals are more likely to
access valuable opportunities, while their low-reputation counterparts
are not categorically excluded, but face restricted chances to engage in
high-payoff interactions. By allowing probabilistic transitions between
game types, we can mitigate rigid stratification and foster mobility
within the reputation hierarchy.

The reputation-based game transition structure governs both the
conditions of participation and the subsequent consequences for the
evolution of individual reputation and strategic behavior. These two
components are inherently interconnected and co-evolve over time,
jointly shaping the system’s overall dynamics. In particular, the out-
come of each interaction significantly influences the trajectory of an
individual’s social standing. It is important to note that a player’s repu-
tation, being dynamic and context-sensitive, is continuously updated in
response to the strategies adopted during pairwise interactions. Individ-
uals are socially rewarded or penalized based on the degree to which
their actions conform to the expectation of cooperation. Specifically,
cooperation is assumed to enhance an individual’s reputation, while
defection generally leads to its decline.

The reputation update rule for individual i at time step ¢ is defined
as:

2
() = [ri(t—1)+ D Ar,.j] , 3)

JEN; 0
where N; represents the set of neighbors of agent i and 4r;; represents
the change in reputation after interacting with j, which is determined
by the strategy combination of both agents. The rule is specified as
follows:
5, ifs;=S,=C
4 25, ifS,#S;,and S;=C
ro=
Y |-26. if S, #£S;and S, =D
-5, ifS;=S,=D,

(€3]

where S; denotes the strategy adopted by individual i, and 6 is a fixed
parameter that quantifies the magnitude of reputation change. This rule
differentiates between symmetric and asymmetric interactions, with
larger reputation adjustments occurring in the latter case when an
individual cooperates while the other defects. In other words, behavior
deviating from social norms, whether positive or negative, has a more
significant impact on an individual’s reputation.

To ensure numerical stability and keep the reputation measure
interpretable, we employ a truncation operation that confines r;(r) to
the interval [0, 2], thereby preventing unbounded growth or underflow:

0, ifa<O0
[a]g= a, if0<a<2 5)
2, ifa>2.

As reputation accumulates through repeated interactions, it begins
to exert an increasingly significant influence on the evolutionary dy-
namics of strategies. The dual role of reputation, as both an outcome
of past actions and a determinant of future strategic success, establishes
a feedback loop that shapes the trajectory of social behavior over time.

In particular, the strategy update process is governed by an in-
dividual’s fitness, which integrates both payoff-related and social di-
mensions. Based on this, we define a fitness value as a weighted
combination of the individual’s accumulated material payoffs and their
current reputation level, reflecting the intuition that both material
wealth and social recognition are critical in determining the influence
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of an individual on the population. The fitness of individual i at time ¢
is given by:

fi=m-I;+(1—m)-r;, 6)

where II; denotes the cumulative payoff of individual i obtained
through game interactions, r; is the individual’s current reputation,
and m € (0,1) is a reputation sensitivity factor that modulates the
relative weight of material versus reputation components. A smaller
value of m indicates a higher sensitivity to reputation, while a larger
value emphasizes the increased weight of payoff.

Strategy evolution employs an asynchronous update mechanism.
After each round of interactions, a randomly selected individual i
chooses a neighbor j and evaluates the prospect of adopting j’s strategy.
Here we use the Fermi update rule, which defines the probability of
strategy adoption as:

1

P(S; < S)) =
1+ exp(

@)

fimJ; )
K
where k > 0 is the selection intensity or noise parameter that modulates
the stochasticity of decision-making. When « is large, the adoption
probability becomes less sensitive to differences in fitness, implying
greater randomness in behavioral transitions. Conversely, as «x ap-
proaches zero, individuals are more likely to deterministically imitate
neighbors with higher fitness, thereby reinforcing selective pressure
and accelerating the convergence of dominant strategies.

The details of our model are summarized in Fig. 1. Each node in
the network represents an agent, and the agent can choose between C
or D in each round of interaction. Each agent has a reputation value
that is dynamically updated over time, and by introducing an adaptive
reputation threshold 6, the agents are divided into two categories: high-
reputation individuals (marked red) and low-reputation individuals
(marked blue). The reputation threshold ¢ is adjusted as the average
reputation of the group changes, thereby achieving dynamic evolution
of the individual reputation state. The reputation attributes between
agents have a decisive influence on the type of game they participate
in: when two high-reputation individuals meet, a high-value game
(referred to as Game 1) is played. When two low-reputation individuals
interact, a low-value game (referred to as Game 2) is played, where
the payoff is a fixed value b, which has nothing to do with reputation.
If one of the two interacting parties is a high-reputation individual
and the other is a low-reputation individual, the game type between
the two parties is transferred to a high-value game with probability
p, and to a low-value game with probability (1 — p), thus introducing
a mechanism for the interference of reputation heterogeneity on the
game structure. After each round of the game, the reputation value
of the agent is updated according to the strategy choices of itself and
its neighbors, promoting coordinated changes of the strategy evolution
and reputation structure.

3. Results

Next, we analyze the evolution of cooperation and the reputation
threshold under different game parameters. To account for the potential
impact of network structure on system dynamics, we both use square
lattice and Watts—Strogatz small-world networks. In the latter case, an
average degree k = 10 and the rewiring probability p = 0.5 are used.
For comparison, all networks contain N = 2500 nodes. Initially, each
agent is randomly assigned to be a cooperator or a defector with equal
probability. All simulations are implemented using Python 3.10.

3.1. Heatmap of cooperation density

By systematically adjusting the relative weight factor m and the
game transition probability p in the extended fitness function, we
further examined the evolutionary characteristics of the cooperation
level in the system. To comprehensively evaluate the universality of
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Fig. 2. Cooperation level on the p —m parameter plane at different networks. Color-coded cooperation density f. is shown in dependence of the game asymmetry parameter
p and the reputation sensitivity factor m for square lattice (SL) and for small-world (WS) network. The value of parameter b, = 1.1 is fixed for both cases. The actual value of f,
is explained in the legend to the right of each panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the system behavior and the impact of the network structure on the
evolution process, we conducted simulation experiments in the two
typical network structures mentioned as SL and WS. Fig. 2 summarizes
the simulation results, in which the cooperation cost ¢ = 1 and the
temptation benefit 5, = 1.1 of the low-value game are uniformly set
in all cases. From the results, it can be observed that both in the
regular lattice and the small-world network, with the decrease of the
game transition probability p and the increase of the weight factor
m, the overall cooperation density of the system shows a significant
decline. In addition, within the parameter range examined, we can
clearly divide the parameter areas corresponding to pure cooperation
and pure defection. It is worth noting that the phase transition process
from cooperation to defection shows an obvious right-skewed trend
under different network structures, indicating that there are consistent
phase transition characteristics in game dynamics and that the network
structure has a non-trivial modulating effect on the transition process.

In addition, we further observed that the network topology plays a
crucial regulatory role in the process of cooperation evolution. Specifi-
cally, in the SL and WS, when the relative weight factor m reaches about
0.4 and 0.25 respectively, the density of cooperators drops sharply,
forming a clearly visible transition line on the p-m parameter plane.
The phenomenon indicates that the system has undergone a transition
from a cooperation-dominated state to a defection-dominated state,
that is, there is an obvious critical point for cooperation evolution.
In particular, in the regular network, the system has a higher toler-
ance for changes in p and m, and the transition region is wider and
smoother than that of WS graph. The structural feature provides a
greater possibility for the long-term coexistence of cooperation and
defection strategies, delays the trend of pure defection strategies that
dominate the whole population, and effectively suppresses the occur-
rence of a complete collapse of cooperation. In contrast, due to the
rapid spread of information caused by higher connectivity and short
average path length, the system is more sensitive to disturbances, and
the critical behavior of cooperation turning into defection is sharper
and steeper in WS networks. In other words, the network structure
not only affects the overall level of cooperation in the system but also
determines the robustness and fragility of cooperation stability. The
structure of the regular grid helps to maintain the existence of the early
cooperation groups through localized interaction restrictions, provid-
ing more living space for cooperation. While the WS effect promotes
information diffusion, it also exacerbates instability in the process of
strategy evolution.

)
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Fig. 3. Schematic diagram of possible strategy-reputation states. Red represents
high reputation cooperators (HC), dark blue represents high reputation defectors
(HD), pink represents low reputation cooperators (LC), and light blue represents low
reputation defectors (LD), showing the possible transition of four possible states of
individuals in the framework of strategy and reputation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

3.2. The formation of cooperation-dominated state under different b,

After introducing the reputation mechanism to regulate the het-
erogeneous game structure, it is worth noting whether the reputation-
based classification mechanism can effectively promote the continuous
evolution of cooperation, especially when multiple game types coexist.
When low-value games exert strong strategic inducements, individuals
may opt for defection strategies driven by short-term profit incentives.
In such scenarios, the ability of the reputation mechanism to maintain
a steady state dominated by cooperation through dynamic constraints
becomes a critical criterion for evaluating its effectiveness and robust-
ness. In this context, we analyze the long-term evolutionary dynamics
of the model under varying levels of temptation in low-value games,
denoted by b;, to investigate how reputation facilitates cooperation
within heterogeneous game environments.

To facilitate the analysis of individual state transitions during the
strategy evolution, we first illustrate the four possible states of indi-
viduals in Fig. 3, categorized by their strategies (C/D) and reputation
levels (high/low). Specifically, red nodes represent high-reputation
cooperators (HC), dark blue nodes represent high-reputation defectors
(HD), pink nodes correspond to low-reputation cooperators (LC), and
light blue nodes represent low-reputation defectors (LD). Using this
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step=2000 step=3000

Fig. 4. Spatial evolution of individual states on SL under different temptation intensities. From top to bottom, the rows correspond to b, = 1.1, 1.5, and 2.0. From left to
right, the columns show the spatial distribution of states at four representative stages of the evolutionary process (obtained at MCS = 0, 500, 2000, and 3000 steps). All simulations
are performed under fixed parameters m = 0.6 and p = 0.9. The color-code of players, which informs about the individual strategy and reputation, is identical to those we used in

Fig. 3.

color-coding, Fig. 4 presents the evolution of the spatial distribution
of individual status under fixed parameters p = 0.9 and m = 0.5, with
varying values of b,. We consider three representative cases: b, = 1.1,
1.5, and 2.0, which correspond to the upper, middle, and lower rows
of Fig. 4, respectively. Each snapshot presents a typical configuration
of the system at a given time step.

Simulation results demonstrate that even under high levels of temp-
tation in low-value games, cooperators can still proliferate widely and
become dominant, while defection is substantially suppressed. Notably,
cooperation is predominantly concentrated among high-reputation in-
dividuals, whereas defection is mainly observed among low-reputation
individuals. These patterns reveal a coupling feedback mechanism be-
tween strategy and reputation: reputation functions not only as a deter-
minant of game type selection but also imposes structural constraints on
the diffusion of strategies. A stable correlation between high-reputation
cooperation and low-reputation defection emerges, driving the system
toward a cooperation-dominated equilibrium.

3.3. Effect of reputation sensitivity on the steady-state reputation threshold

In a reputation-driven heterogeneous game system, the effective-
ness of the reputation mechanism depends not only on how it guides
strategy selection but also on the degree of influence of reputation
itself on individual fitness. In our model, the influence is controlled
by the parameter m which reflects the sensitivity of individuals to the
reputation in the strategy evolution. Therefore, it is of great significance
to reveal how the reputation mechanism maintains cooperation under
different temptation values to understand the relationship between the
parameter m and the steady-state reputation threshold of the system. In

particular, when the temptation of low-value games is strong, if indi-
viduals are insensitive to reputation influence (i.e., m is large), whether
the system can still maintain an effective reputation differentiation
and behavior regulation mechanism becomes the key to verifying the
robustness of the model.

To elaborate on this issue, we systematically examined the rela-
tionship between the reputation weight factor m and the steady-state
reputation threshold of the system under three typical low-value game
temptation intensities (b, = 1.1, 1.5, and 2.0), and the results are shown
in Fig. 5. It can be clearly seen that the reputation threshold decreases
significantly with increasing m at all b, values. The trend shows that
when the weight of reputation in individual fitness decreases, the
individual’s sensitivity to its reputation level decreases, making it easier
to adopt defection, which leads to a continuous decline in reputation.

By further comparing the evolutionary characteristics under dif-
ferent network structures, we found that the network structure has
an important influence on the robustness of the reputation mecha-
nism. In the lattice, the reputation threshold shows a relatively gentle
downward trend with an increase of m, showing a strong structural
buffering effect. In the WS network, however, the threshold decreases
significantly faster, especially when m is between 0.7 and 0.8, the
reputation thresholds corresponding to the three temptation intensities
drop sharply, indicating that the reputation mechanism is ineffective
under the condition. In other words, the effectiveness of the reputation
mechanism in regulating the evolution of individual strategies is not
only affected by the internal behavioral parameters of the individual
but is also highly sensitive to the complexity of the network struc-
ture. Especially in a dynamic game environment, if the influence of
reputation on fitness is insufficient, it will be difficult to support the
continued role of its strategy regulation mechanism, thereby weakening
the occurrence of cooperation.
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Fig. 5. The steady-state reputation threshold of the system under different combinations of 5, and m parameters. The three colors in the figure correspond to different
temptation values, as shown in the legends. Panel (a) illustrates the variation of the reputation threshold concerning m on SL, whereas panel (b) presents the corresponding results
on WS network. The game transition probability is fixed p = 0.9 for both cases. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 6. The evolution of cooperation level under different initial reputation distributions. Each row corresponds to a specific value of the reputation sensitivity parameter
m (from top to bottom: m =0, 0.5, and 1.0). The left column presents simulation results on SL, while the right column shows results on WS. Each panel compares three types of
initial reputation distributions: uniform, Gaussian, and bimodal. All simulations are conducted with fixed parameters: p = 0.9 and b, = 1.5.
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3.4. Robustness of cooperation evolution under diverse initial reputation
distributions

In a reputation-driven evolutionary game system, while the en-
dogenous update mechanism of reputation is central to the long-term
dynamics, the initial conditions—particularly the distribution of initial
reputations—may exert a non-negligible influence on the early-stage
formation and propagation of cooperation structures. Real-world social
systems often exhibit heterogeneous reputation landscapes from the
outset. For instance, some communities are characterized by a few indi-
viduals with exceptionally high reputations, while others demonstrate
more uniform or multimodal distributions. The heterogeneity neces-
sitates a systematic investigation of how different initial reputation
patterns condition the trajectory and robustness of cooperation.

To clarify this, we construct three representative scenarios of initial
reputation distributions: a uniform distribution, a Gaussian (normal)
distribution, and a bimodal distribution. On this basis, we introduce
varying degrees of reputation sensitivity, governed by the parameter m,
which modulates the relative weight of reputation in fitness evalua-
tions. Specifically, we consider three levels of sensitivity: m = 0 (high
sensitivity), m = 0.5 (moderate sensitivity), and m = 1 (no sensitivity).
The resulting evolution of the proportion of cooperators is depicted in
Fig. 6.

Our results consistently demonstrate that the initial distribution
of reputation exerts limited influence on the long-term cooperation
level. Regardless of the network structure or the degree of reputation
sensitivity, the system rapidly converges to a steady state, and the
evolution trajectories across different scenarios are remarkably similar.
The outcome indicates that the dominant factor governing cooperation
dynamics lies in the reputation update and strategy adoption mecha-
nisms themselves, rather than in the initial heterogeneity of individual
standing. Moreover, the weak dependence on initial conditions un-
derscores the robustness of the reputation-driven system: cooperators
can reliably emerge and stabilize even in environments marked by
substantial asymmetries at the outset.

4. Conclusions

Our work proposes a reputation-driven game transformation model,
aiming to explore the co-evolution mechanism between individual
strategy and social status in complex networks. Importantly, we com-
bined a heterogeneous game transformation and a dynamic reputation
feedback mechanism and depicted how the behavior choices of individ-
uals in the game process are affected by both their reputation and social
interaction. By introducing an adaptive reputation threshold, individ-
uals are dynamically divided into high-reputation and low-reputation
groups according to their reputation, and the types of games in which
individuals participate are transformed into high-value and low-value
games. At the same time, the reputation value of an individual is
updated in real-time according to the strategies and his interacting
partner in the game, which in turn affects his future game type and
strategy evolution.

Based on our results, we have drawn several key conclusions. First,
the network structure plays an important regulatory role in the evo-
lution of cooperation. In particular, lattice networks support the long-
term coexistence of competing strategies through localized connections,
while small-world networks are more susceptible to parameter changes
due to their high information dissemination efficiency and sensitivity
to strategy evolution. Second, the reputation mechanism promotes the
formation of a cooperation dominant state by dynamically adjusting the
strategy choices of individuals. Especially in low-value games, cooper-
ation can be maintained even when the temptation factor is high. The
threshold change in the reputation mechanism is closely related to the
reputation sensitivity of individuals. When the reputation sensitivity is
high, the cooperation is more likely to gain support, while when the
sensitivity is low, defection is likely to increase. At the same time, the
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complexity of the network structure also regulates the effectiveness of
the reputation mechanism. It is worth noting that although the initial
reputation distribution affects the path of cooperation evolution, it has
little impact on the final steady state of the system.

In our work, we have studied the phenomenon of reputation-based
game transition motivated by real life experiences, but there is still
room for further expansion. First, multiple discrete strategies or con-
tinuous strategy spaces can be introduced to more realistically char-
acterize the strategy differences of individuals. Second, considering
the complexity of the interaction structure in real society, the model
can be extended to multiplex networks or temporal networks in the
future to explore the impact of multiple relationships and dynamic
connections on the evolution of cooperation. In addition, introducing
random perturbations in the reputation update mechanism can help
simulate information noise and environmental uncertainty in reality,
and combine it with more realistic strategy update rules to improve
the practical applicability of the model.
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