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 A B S T R A C T

In real-world social systems, individual interactions are frequently shaped by reputation, which not only 
influences partner selection but also affects the nature and benefits of the interactions themselves. We propose 
a heterogeneous game transition model that incorporates a reputation-based dynamic threshold mechanism 
to investigate how reputation regulates game evolution. In our framework, individuals determine the type of 
game they engage in according to their own and their neighbors’ reputation levels. In turn, the outcomes of 
these interactions modify their reputations, thereby driving the adaptation and evolution of future strategies in 
a feedback-informed manner. Through simulations on two representative topological structures, square lattice 
and small-world networks, we find that network topology exerts a profound influence on the evolutionary 
dynamics. Due to its localized connection characteristics, the square lattice network fosters the long-term 
coexistence of competing strategies. In contrast, the small-world network is more susceptible to changes 
in system parameters due to the efficiency of information dissemination and the sensitivity of strategy 
evolution. Additionally, the reputation mechanism is significant in promoting the formation of a dominant 
state of cooperation, especially in contexts of high sensitivity to reputation. Although the initial distribution 
of reputation influences the early stage of the evolutionary path, it has little effect on the final steady state 
of the system. Hence, we can conclude that the ultimate steady state of evolution is primarily determined by 
the reputation mechanism and the network structure.
1. Introduction

In the study of evolutionary game theory, understanding the mecha-
nism of cooperation and its maintenance conditions has been one of the 
main issues that have attracted widespread attention in the academic 
community [1]. Individuals often need to sacrifice their interests to 
achieve the general interests of the group. Choosing cooperation seems 
to violate the basic principle of ‘‘survival of the fittest’’ in Darwin’s 
natural selection [2]. However, in the real world, whether it is a 
microscopic biological system or a macroscopic human society, the 
phenomenon of cooperation is always ubiquitous and plays an irre-
placeable role in the promotion of social progress and the evolution 
of civilization [3,4]. As an interdisciplinary theoretical framework that 
connects biology, economics, and social sciences, evolutionary game 
theory was proposed to explain such phenomena and theoretically 
provides a solid analytical tool and model framework for the formation 
and stability of cooperation [5]. In recent years, it has also been widely 
applied to the analysis of cooperation in digital economic systems and 
data governance [6]. In this framework, typical models such as the 
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prisoner’s dilemma [7–9], the snowdrift game [10,11], and the stag 
hunt game [12–14] are widely used to describe the conflict between 
cooperation and defection in the real world and their evolutionary 
path, becoming an important basis for exploring the mechanism of 
cooperation.

In the framework of traditional evolutionary game theory, the in-
troduction of spatial structure is considered as one of the important 
mechanisms to promote the evolution of cooperation [15,16]. In an 
early work, Nowak and May [17] pointed out that although the defec-
tion strategy has a significant evolutionary advantage, the clustering 
effect caused by local interactions can effectively promote the for-
mation and maintenance of cooperation. This discovery has greatly 
promoted academic research on game behavior in complex networks, 
and related results generally believe that spatial structure plays a 
positive role in most social dilemmas [18,19]. Zeng et al. proposed a 
complex network model with power-law activating patterns, revealing 
how heterogeneous interaction frequencies affect the coevolution of 
structure and behavior [20]. However, subsequent studies have also 
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found that spatial structure does not promote cooperation in all types 
of games. For example, in the snowdrift game, spatial structure may 
inhibit the spread of cooperation if imitation is applied [21]. This 
observation warns us that the impact of the network topology on the 
evolution of cooperation is more subtle and may depend on the specific 
setting of game types and the interaction rules.

Over the years, scholars gradually realized that static network struc-
tures cannot fully capture the dynamic and heterogeneous nature of 
individual interactions observed in real societies [22–24]. Feng et al. 
investigated the information dynamics in evolving networks through 
the lens of the birth–death process, and highlighted how the interplay 
of random drift and natural selection shapes the evolution of indi-
vidual states and interaction structures [25]. These findings exemplify 
a broader shift in evolutionary game research from fixed interaction 
frameworks to adaptive systems in which both strategies and network 
topologies evolve. In recent years, coevolutionary game theory has 
gradually emerged [26], coupling the evolution of individual strate-
gies with the evolution of interaction structures [27–29], and has 
become a new paradigm for understanding the evolution of cooper-
ation. Individuals not only adjust their strategies but also actively 
change their interactions based on benefit feedback, such as discon-
necting from defectors and choosing new partners [30,31], thereby 
dynamically reconstructing their local networks [32]. The type of co-
evolutionary mechanism [33], such as link reciprocity and structural 
adaptability, has not only been theoretically proven to improve the 
level of cooperation significantly but has also been widely supported 
by human experiments [34,35]. More recently, the focus has extended 
beyond structural dynamics to include the evolution of preference 
frameworks themselves, transitioning from outcome-based models to 
language-based and norm-sensitive approaches [36], thereby enriching 
the theoretical foundations for understanding social decision making.

It is worth noting that the study of coevolutionary games has 
gradually expanded from focusing solely on structural evolution to in-
corporating heterogeneity in individual attributes. Among these, mech-
anisms centered on reputation have attracted increasing scholarly at-
tention [37,38]. Reputation [39,40], as a cumulative reflection of an 
individual’s behavioral history, influences not only the dissemination 
of strategies but also the selection of interaction partners [41], thereby 
shaping a dynamic and feedback-sensitive game environment. These 
developments offer novel theoretical tools and simulation frameworks 
for capturing the complex evolutionary pathways of cooperation in 
real-world societies. In their review, Xia et al. comprehensively illus-
trated the pivotal role of reputation and reciprocity in the evolution 
of cooperation [42]. They emphasized that reputation, as a record of 
social conduct, governs strategic decisions while simultaneously rein-
forcing the stability and propagation of cooperation when interlinked 
with direct and indirect reciprocity mechanisms. Further advancing 
the line of inquiry, Hu et al. introduced an adaptive reputation model 
demonstrating that, in dynamic social networks, individuals adjust their 
trust levels in real-time based on interactive experiences, thereby fos-
tering more resilient cooperation structures [43]. The adaptive process 
significantly enhances both the level of trust and the prevalence of 
cooperation across the network. On a more theoretical level, Capraro 
and Perk provided a formal foundation for modeling moral prefer-
ences, analyzing how social norms, reputation, and individual decisions 
coevolve [44].

In real-world social systems, interactions between individuals do not 
take place within a uniform or static game environment. Instead, they 
exhibit a high degree of heterogeneity and dynamism. Su et al. sys-
tematically proposed the concept of game transitions, suggesting that 
individuals may encounter different types of strategic interactions over 
time, even within a single evolutionary framework [45]. The approach 
fundamentally extends traditional models by allowing the payoff en-
vironment to evolve alongside strategy dynamics. Building upon this 
foundation, Feng et al. further incorporated Markov processes to gov-
ern the transitions between games, providing a stochastic framework 
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that captures the probabilistic and temporal characteristics of such 
environmental transitions [46]. The mechanism by which games are 
transformed can be driven by various factors, among which reputation 
serves as a crucial social signal that influences access to cooperation 
opportunities and the overall quality of interactions [47–49]. In gen-
eral, individuals with higher reputations tend to obtain more valuable 
cooperation resources and are more likely to engage in high-payoff 
games, while those with lower reputations are often marginalized 
and engage in low-payoff or even exclusionary interactions. Building 
on these observations, we propose a heterogeneous game transition 
model that incorporates a dynamic reputation threshold mechanism. 
In our model, individuals are dynamically classified as either high- 
or low-reputation agents based on the average reputation level of the 
population, which in turn determines the type of game they engage 
in either a high-value or low-value game. Specifically, high-reputation 
individuals participate in high-value games, while low-reputation indi-
viduals participate in low-value games. When individuals of different 
reputation categories interact, game transitions occur with probability. 
Furthermore, individual reputations are updated in response to their 
strategies, and the feedback mechanism subsequently influences their 
strategic preferences and interaction patterns in future rounds, forming 
a feedback-driven evolutionary dynamic system.

Our paper is structured as follows. We first describe our model in 
Section 2. It is a game transition model based on adaptive reputation 
thresholds and a policy update rule based on fitness. In Section 3, we 
present in detail the experimental results obtained in a wide variety of 
parameter values and different network structures. Finally, in Section 4, 
we summarize our research results and sketch some potential future 
developments.

2. Model

In interpersonal actions, the reputation of an agent plays a crucial 
role in determining the quality of the interaction. An individual’s social 
evaluation not only affects his or her position in the group but also 
directly determines how he or she interacts with others. In this section, 
we propose a model for the evolution of the game transition based 
on reputation feedback to characterize how individuals choose game 
objects and game types based on their reputation values on social 
networks. The model assumes that each agent is represented as a node 
in the network and that the edges between nodes represent possible 
interactions between agents. Each agent has a dynamically changing 
reputation value and interacts with other neighbors randomly at each 
time step, and the specific game-type involved is determined by the 
reputation of the two interacting parties.

2.1. Game classification

In the evolutionary process, agents may participate in different 
types of games, where each game requires individuals to choose be-
tween two fundamental strategies: cooperation (𝐶) or defection (𝐷). 
This decision determines the final payoff, which depends on the specific 
combination of their chosen strategies. In a given game 𝑙, two agents 
make their decisions simultaneously and independently. If both agents 
choose to cooperate (𝐶,𝐶), each will receive a payoff 𝑅𝑙 and if both 
defect (𝐷,𝐷), each receives a lower payoff 𝑃𝑙. When one defects and 
the other cooperates, the defector earns a higher payoff 𝑇𝑙, while the 
cooperator receives a lower payoff 𝑆𝑙.

As a baseline, when the agents’ reputations are low, the interaction 
follows a classic Prisoner’s Dilemma structure, in which the payoff 
values satisfy the following condition:

𝑇𝑙 > 𝑅𝑙 > 𝑃𝑙 > 𝑆𝑙 .
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Fig. 1. Reputation-based game type transition mechanism. The figure illustrates how the actual social game type between individuals is affected by their reputation status. The 
model introduces an adaptive reputation threshold to dynamically divide agents into high-reputation individuals (red) and low-reputation individuals (blue). A high-value game is 
played when both interacting individuals have high reputations, whereas a low-value game occurs when both have low reputations. In interactions between a high-reputation and a 
low-reputation individual, the game type alternates probabilistically between these two. For specific rules and parameter settings, please refer to the main text. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
In this scenario, we assume that cooperation requires a cost 𝑐, but 
brings potential benefits 𝑏𝑙, which may vary with the context of the 
interaction. The corresponding payoff matrix is:
[

𝑏𝑙 − 𝑐 −𝑐
𝑏𝑙 0

]

,

where the classic structure of the Prisoner’s Dilemma is retained: 
mutual cooperation provides a benefit 𝑏𝑖, while defection yields a 
higher payoff to the defector at the expense of the cooperator. It 
captures the fundamental social dilemma presented in many real-world 
interactions, where cooperation is costly but beneficial in the long term, 
and defection offers an immediate but often unsustainable advantage.

However, in many real-world social and economic systems, in-
teractions between agents are significantly influenced by reputation. 
Reputation serves as a critical social signal, reflecting an agent’s history 
of cooperation, social standing, or perceived trustworthiness. Agents 
with higher reputations are more likely to be trusted, invited into 
valuable collaborations, and given access to superior resources. In this 
sense, reputation functions as a form of social capital, translating into 
tangible strategic advantages.

To capture the social dynamic, we extend the baseline model by 
introducing a heterogeneous, reputation-driven game. In the modified 
framework, an agent’s reputation influences the payoffs they receive 
in interactions. Specifically, when an agent’s reputation exceeds a 
given threshold, they gain access to high-value interactions, in which 
the rewards from cooperation increase with the reputations of both 
participants. The latter element reflects empirical observations that 
high-reputation individuals tend to engage in more beneficial and 
sustained cooperation. The payoff matrix for such interactions is given 
by:
[

𝑟̄ − 𝑐 −𝑐
𝑟self
2 0

]

,

where 𝑟̄ denotes the average reputation of the interacting agents 𝑖
and 𝑗, reflecting their joint social standing, and 𝑟self represents the 
reputation of the agent in question. The parameter 𝑐 indicates the 
cost of cooperation. In order to highlight the role of reputation as 
a factor promoting mutual trust, we assume that when two agents 
choose to cooperate, the cost of cooperation is shared equally by both 
parties, thereby effectively reducing individual burdens and promoting 
cooperation.

By embedding reputation directly into the payoff structure, we 
capture the reputation-mediated enhancement of cooperation payoffs. 
3 
Agents with higher reputations are more likely to access superior in-
teraction opportunities and obtain greater benefits because reputation 
serves as a form of social capital that influences both the likelihood 
of being chosen as a partner and the expected payoff from interac-
tions. This assumption is consistent with empirical observations: high-
reputation agents tend to form more stable, productive, and mutually 
beneficial relationships, supported by stronger mutual trust.

In contrast, interactions involving low-reputation agents often lack 
trust and are susceptible to opportunistic behavior. Such interactions 
are characterized by a lower willingness to cooperate, a higher risk of 
cooperation failure, and subsequently diminished payoffs. This reputa-
tion asymmetry highlights the critical role of social trust structures in 
dynamic strategic environments and illustrates how historical behavior 
embodied in reputation can have profound effects on future strategies.

2.2. Reputation-based game transition

In real-world social systems, an individual’s reputation plays a 
pivotal role in shaping their interaction patterns and the benefits they 
can attain. Individuals with higher reputations are typically more likely 
to be trusted and included in profitable cooperative endeavors, whereas 
those with lower reputations may be marginalized and confined to 
lower-payoff interactions. Such dynamics underscore the stratified na-
ture of social cooperation, where reputation serves as an informal 
credential for access to high-value opportunities.

To capture this element in our model, we introduce an adaptive 
reputation threshold 𝜃(𝑡), which dynamically separates high-reputation 
individuals from low-reputation ones. The threshold is designed to 
evolve with the population’s overall reputation level and is determined 
by the average reputation at time 𝑡, expressed as: 
𝜃(𝑡) = avr𝑟(𝑡). (1)

Based on the adaptive threshold, each individual 𝑖 at time 𝑡 can be 
categorized as follows: 

𝑖 ∈

{

𝐻, 𝑟𝑖(𝑡) > 𝜃(𝑡) (high-reputation individual)
𝐿, 𝑟𝑖(𝑡) ≤ 𝜃(𝑡) (low-reputation individual). (2)

To further refine the interaction structure, we introduce a
reputation-driven game selection mechanism that depends on the rep-
utation categories of the interacting pair (𝑖, 𝑗). When both individuals 
have high reputations, (𝑖, 𝑗) ∈ 𝐻 × 𝐻 , they engage in a high-value 
game, which yields mutually beneficial outcomes with greater poten-
tial payoffs. Conversely, when both individuals have low reputations, 



H. Yue et al. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 199 (2025) 116693 
(𝑖, 𝑗) ∈ 𝐿 × 𝐿, they participate in a low-value game, where cooperation 
is limited and payoffs are modest. In mixed-reputation pairings, (𝑖, 𝑗) ∈
𝐻×𝐿∪𝐿×𝐻 , the game type is determined probabilistically: a high-value 
game occurs with probability 𝑝, and a low-value game with probability 
1 − 𝑝. The stochastic mechanism captures the asymmetry of real-world 
interactions. Namely, high-reputation individuals are more likely to 
access valuable opportunities, while their low-reputation counterparts 
are not categorically excluded, but face restricted chances to engage in 
high-payoff interactions. By allowing probabilistic transitions between 
game types, we can mitigate rigid stratification and foster mobility 
within the reputation hierarchy.

The reputation-based game transition structure governs both the 
conditions of participation and the subsequent consequences for the 
evolution of individual reputation and strategic behavior. These two 
components are inherently interconnected and co-evolve over time, 
jointly shaping the system’s overall dynamics. In particular, the out-
come of each interaction significantly influences the trajectory of an 
individual’s social standing. It is important to note that a player’s repu-
tation, being dynamic and context-sensitive, is continuously updated in 
response to the strategies adopted during pairwise interactions. Individ-
uals are socially rewarded or penalized based on the degree to which 
their actions conform to the expectation of cooperation. Specifically, 
cooperation is assumed to enhance an individual’s reputation, while 
defection generally leads to its decline.

The reputation update rule for individual 𝑖 at time step 𝑡 is defined 
as: 

𝑟𝑖(𝑡) =

[

𝑟𝑖(𝑡 − 1) +
∑

𝑗∈𝑁𝑖

𝛥𝑟𝑖𝑗

]2

0

, (3)

where 𝑁𝑖 represents the set of neighbors of agent i and 𝛥𝑟𝑖𝑗 represents 
the change in reputation after interacting with j, which is determined 
by the strategy combination of both agents. The rule is specified as 
follows: 

𝛥𝑟𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿, if 𝑆𝑖 = 𝑆𝑗 = 𝐶
2𝛿, if 𝑆𝑖 ≠ 𝑆𝑗 and 𝑆𝑖 = 𝐶
−2𝛿, if 𝑆𝑖 ≠ 𝑆𝑗 and 𝑆𝑖 = 𝐷
−𝛿, if 𝑆𝑖 = 𝑆𝑗 = 𝐷,

(4)

where 𝑆𝑖 denotes the strategy adopted by individual 𝑖, and 𝛿 is a fixed 
parameter that quantifies the magnitude of reputation change. This rule 
differentiates between symmetric and asymmetric interactions, with 
larger reputation adjustments occurring in the latter case when an 
individual cooperates while the other defects. In other words, behavior 
deviating from social norms, whether positive or negative, has a more 
significant impact on an individual’s reputation.

To ensure numerical stability and keep the reputation measure 
interpretable, we employ a truncation operation that confines 𝑟𝑖(𝑡) to 
the interval [0, 2], thereby preventing unbounded growth or underflow: 

[𝑎]20 =

⎧

⎪

⎨

⎪

⎩

0, if 𝑎 < 0
𝑎, if 0 ≤ 𝑎 ≤ 2
2, if 𝑎 > 2.

(5)

As reputation accumulates through repeated interactions, it begins 
to exert an increasingly significant influence on the evolutionary dy-
namics of strategies. The dual role of reputation, as both an outcome 
of past actions and a determinant of future strategic success, establishes 
a feedback loop that shapes the trajectory of social behavior over time.

In particular, the strategy update process is governed by an in-
dividual’s fitness, which integrates both payoff-related and social di-
mensions. Based on this, we define a fitness value as a weighted 
combination of the individual’s accumulated material payoffs and their 
current reputation level, reflecting the intuition that both material 
wealth and social recognition are critical in determining the influence 
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of an individual on the population. The fitness of individual 𝑖 at time 𝑡
is given by: 
𝑓𝑖 = 𝑚 ⋅𝛱𝑖 + (1 − 𝑚) ⋅ 𝑟𝑖, (6)

where 𝛱𝑖 denotes the cumulative payoff of individual 𝑖 obtained 
through game interactions, 𝑟𝑖 is the individual’s current reputation, 
and 𝑚 ∈ (0, 1) is a reputation sensitivity factor that modulates the 
relative weight of material versus reputation components. A smaller 
value of 𝑚 indicates a higher sensitivity to reputation, while a larger 
value emphasizes the increased weight of payoff.

Strategy evolution employs an asynchronous update mechanism. 
After each round of interactions, a randomly selected individual 𝑖
chooses a neighbor 𝑗 and evaluates the prospect of adopting 𝑗’s strategy. 
Here we use the Fermi update rule, which defines the probability of 
strategy adoption as: 

𝑃 (𝑆𝑖 ← 𝑆𝑗 ) =
1

1 + exp
( 𝑓𝑖−𝑓𝑗

𝜅

) , (7)

where 𝜅 > 0 is the selection intensity or noise parameter that modulates 
the stochasticity of decision-making. When 𝜅 is large, the adoption 
probability becomes less sensitive to differences in fitness, implying 
greater randomness in behavioral transitions. Conversely, as 𝜅 ap-
proaches zero, individuals are more likely to deterministically imitate 
neighbors with higher fitness, thereby reinforcing selective pressure 
and accelerating the convergence of dominant strategies.

The details of our model are summarized in Fig.  1. Each node in 
the network represents an agent, and the agent can choose between 𝐶
or 𝐷 in each round of interaction. Each agent has a reputation value 
that is dynamically updated over time, and by introducing an adaptive 
reputation threshold 𝜃, the agents are divided into two categories: high-
reputation individuals (marked red) and low-reputation individuals 
(marked blue). The reputation threshold 𝜃 is adjusted as the average 
reputation of the group changes, thereby achieving dynamic evolution 
of the individual reputation state. The reputation attributes between 
agents have a decisive influence on the type of game they participate 
in: when two high-reputation individuals meet, a high-value game 
(referred to as Game 1) is played. When two low-reputation individuals 
interact, a low-value game (referred to as Game 2) is played, where 
the payoff is a fixed value 𝑏, which has nothing to do with reputation. 
If one of the two interacting parties is a high-reputation individual 
and the other is a low-reputation individual, the game type between 
the two parties is transferred to a high-value game with probability 
𝑝, and to a low-value game with probability (1 − 𝑝), thus introducing 
a mechanism for the interference of reputation heterogeneity on the 
game structure. After each round of the game, the reputation value 
of the agent is updated according to the strategy choices of itself and 
its neighbors, promoting coordinated changes of the strategy evolution 
and reputation structure.

3. Results

Next, we analyze the evolution of cooperation and the reputation 
threshold under different game parameters. To account for the potential 
impact of network structure on system dynamics, we both use square 
lattice and Watts–Strogatz small-world networks. In the latter case, an 
average degree 𝑘 = 10 and the rewiring probability 𝑝 = 0.5 are used. 
For comparison, all networks contain 𝑁 = 2500 nodes. Initially, each 
agent is randomly assigned to be a cooperator or a defector with equal 
probability. All simulations are implemented using Python 3.10.

3.1. Heatmap of cooperation density

By systematically adjusting the relative weight factor 𝑚 and the 
game transition probability 𝑝 in the extended fitness function, we 
further examined the evolutionary characteristics of the cooperation 
level in the system. To comprehensively evaluate the universality of 
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Fig. 2. Cooperation level on the 𝑝−𝑚 parameter plane at different networks. Color-coded cooperation density 𝑓𝑐 is shown in dependence of the game asymmetry parameter 
𝑝 and the reputation sensitivity factor 𝑚 for square lattice (SL) and for small-world (WS) network. The value of parameter 𝑏𝑙 = 1.1 is fixed for both cases. The actual value of 𝑓𝑐
is explained in the legend to the right of each panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the system behavior and the impact of the network structure on the 
evolution process, we conducted simulation experiments in the two 
typical network structures mentioned as SL and WS. Fig.  2 summarizes 
the simulation results, in which the cooperation cost 𝑐 = 1 and the 
temptation benefit 𝑏𝑙 = 1.1 of the low-value game are uniformly set 
in all cases. From the results, it can be observed that both in the 
regular lattice and the small-world network, with the decrease of the 
game transition probability 𝑝 and the increase of the weight factor 
𝑚, the overall cooperation density of the system shows a significant 
decline. In addition, within the parameter range examined, we can 
clearly divide the parameter areas corresponding to pure cooperation 
and pure defection. It is worth noting that the phase transition process 
from cooperation to defection shows an obvious right-skewed trend 
under different network structures, indicating that there are consistent 
phase transition characteristics in game dynamics and that the network 
structure has a non-trivial modulating effect on the transition process.

In addition, we further observed that the network topology plays a 
crucial regulatory role in the process of cooperation evolution. Specifi-
cally, in the SL and WS, when the relative weight factor 𝑚 reaches about 
0.4 and 0.25 respectively, the density of cooperators drops sharply, 
forming a clearly visible transition line on the 𝑝-𝑚 parameter plane. 
The phenomenon indicates that the system has undergone a transition 
from a cooperation-dominated state to a defection-dominated state, 
that is, there is an obvious critical point for cooperation evolution. 
In particular, in the regular network, the system has a higher toler-
ance for changes in 𝑝 and 𝑚, and the transition region is wider and 
smoother than that of WS graph. The structural feature provides a 
greater possibility for the long-term coexistence of cooperation and 
defection strategies, delays the trend of pure defection strategies that 
dominate the whole population, and effectively suppresses the occur-
rence of a complete collapse of cooperation. In contrast, due to the 
rapid spread of information caused by higher connectivity and short 
average path length, the system is more sensitive to disturbances, and 
the critical behavior of cooperation turning into defection is sharper 
and steeper in WS networks. In other words, the network structure 
not only affects the overall level of cooperation in the system but also 
determines the robustness and fragility of cooperation stability. The 
structure of the regular grid helps to maintain the existence of the early 
cooperation groups through localized interaction restrictions, provid-
ing more living space for cooperation. While the WS effect promotes 
information diffusion, it also exacerbates instability in the process of 
strategy evolution.
5 
Fig. 3. Schematic diagram of possible strategy-reputation states. Red represents 
high reputation cooperators (HC), dark blue represents high reputation defectors 
(HD), pink represents low reputation cooperators (LC), and light blue represents low 
reputation defectors (LD), showing the possible transition of four possible states of 
individuals in the framework of strategy and reputation. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

3.2. The formation of cooperation-dominated state under different 𝑏𝑙

After introducing the reputation mechanism to regulate the het-
erogeneous game structure, it is worth noting whether the reputation-
based classification mechanism can effectively promote the continuous 
evolution of cooperation, especially when multiple game types coexist. 
When low-value games exert strong strategic inducements, individuals 
may opt for defection strategies driven by short-term profit incentives. 
In such scenarios, the ability of the reputation mechanism to maintain 
a steady state dominated by cooperation through dynamic constraints 
becomes a critical criterion for evaluating its effectiveness and robust-
ness. In this context, we analyze the long-term evolutionary dynamics 
of the model under varying levels of temptation in low-value games, 
denoted by 𝑏𝑙, to investigate how reputation facilitates cooperation 
within heterogeneous game environments.

To facilitate the analysis of individual state transitions during the 
strategy evolution, we first illustrate the four possible states of indi-
viduals in Fig.  3, categorized by their strategies (C/D) and reputation 
levels (high/low). Specifically, red nodes represent high-reputation 
cooperators (HC), dark blue nodes represent high-reputation defectors 
(HD), pink nodes correspond to low-reputation cooperators (LC), and 
light blue nodes represent low-reputation defectors (LD). Using this 



H. Yue et al. Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 199 (2025) 116693 
Fig. 4. Spatial evolution of individual states on SL under different temptation intensities. From top to bottom, the rows correspond to 𝑏𝑙 = 1.1, 1.5, and 2.0. From left to 
right, the columns show the spatial distribution of states at four representative stages of the evolutionary process (obtained at MCS = 0, 500, 2000, and 3000 steps). All simulations 
are performed under fixed parameters 𝑚 = 0.6 and 𝑝 = 0.9. The color-code of players, which informs about the individual strategy and reputation, is identical to those we used in 
Fig.  3.
color-coding, Fig.  4 presents the evolution of the spatial distribution 
of individual status under fixed parameters 𝑝 = 0.9 and 𝑚 = 0.5, with 
varying values of 𝑏𝑙. We consider three representative cases: 𝑏𝑙 = 1.1, 
1.5, and 2.0, which correspond to the upper, middle, and lower rows 
of Fig.  4, respectively. Each snapshot presents a typical configuration 
of the system at a given time step.

Simulation results demonstrate that even under high levels of temp-
tation in low-value games, cooperators can still proliferate widely and 
become dominant, while defection is substantially suppressed. Notably, 
cooperation is predominantly concentrated among high-reputation in-
dividuals, whereas defection is mainly observed among low-reputation 
individuals. These patterns reveal a coupling feedback mechanism be-
tween strategy and reputation: reputation functions not only as a deter-
minant of game type selection but also imposes structural constraints on 
the diffusion of strategies. A stable correlation between high-reputation 
cooperation and low-reputation defection emerges, driving the system 
toward a cooperation-dominated equilibrium.

3.3. Effect of reputation sensitivity on the steady-state reputation threshold

In a reputation-driven heterogeneous game system, the effective-
ness of the reputation mechanism depends not only on how it guides 
strategy selection but also on the degree of influence of reputation 
itself on individual fitness. In our model, the influence is controlled 
by the parameter 𝑚 which reflects the sensitivity of individuals to the 
reputation in the strategy evolution. Therefore, it is of great significance 
to reveal how the reputation mechanism maintains cooperation under 
different temptation values to understand the relationship between the 
parameter 𝑚 and the steady-state reputation threshold of the system. In 
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particular, when the temptation of low-value games is strong, if indi-
viduals are insensitive to reputation influence (i.e., 𝑚 is large), whether 
the system can still maintain an effective reputation differentiation 
and behavior regulation mechanism becomes the key to verifying the 
robustness of the model.

To elaborate on this issue, we systematically examined the rela-
tionship between the reputation weight factor 𝑚 and the steady-state 
reputation threshold of the system under three typical low-value game 
temptation intensities (𝑏𝑙 = 1.1, 1.5, and 2.0), and the results are shown 
in Fig.  5. It can be clearly seen that the reputation threshold decreases 
significantly with increasing 𝑚 at all 𝑏𝑙 values. The trend shows that 
when the weight of reputation in individual fitness decreases, the 
individual’s sensitivity to its reputation level decreases, making it easier 
to adopt defection, which leads to a continuous decline in reputation.

By further comparing the evolutionary characteristics under dif-
ferent network structures, we found that the network structure has 
an important influence on the robustness of the reputation mecha-
nism. In the lattice, the reputation threshold shows a relatively gentle 
downward trend with an increase of 𝑚, showing a strong structural 
buffering effect. In the WS network, however, the threshold decreases 
significantly faster, especially when 𝑚 is between 0.7 and 0.8, the 
reputation thresholds corresponding to the three temptation intensities 
drop sharply, indicating that the reputation mechanism is ineffective 
under the condition. In other words, the effectiveness of the reputation 
mechanism in regulating the evolution of individual strategies is not 
only affected by the internal behavioral parameters of the individual 
but is also highly sensitive to the complexity of the network struc-
ture. Especially in a dynamic game environment, if the influence of 
reputation on fitness is insufficient, it will be difficult to support the 
continued role of its strategy regulation mechanism, thereby weakening 
the occurrence of cooperation.
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Fig. 5. The steady-state reputation threshold of the system under different combinations of 𝑏𝑙 and 𝑚 parameters. The three colors in the figure correspond to different 
temptation values, as shown in the legends. Panel (a) illustrates the variation of the reputation threshold concerning 𝑚 on SL, whereas panel (b) presents the corresponding results 
on WS network. The game transition probability is fixed 𝑝 = 0.9 for both cases. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 6. The evolution of cooperation level under different initial reputation distributions. Each row corresponds to a specific value of the reputation sensitivity parameter 
𝑚 (from top to bottom: 𝑚 = 0, 0.5, and 1.0). The left column presents simulation results on SL, while the right column shows results on WS. Each panel compares three types of 
initial reputation distributions: uniform, Gaussian, and bimodal. All simulations are conducted with fixed parameters: 𝑝 = 0.9 and 𝑏𝑙 = 1.5.
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3.4. Robustness of cooperation evolution under diverse initial reputation 
distributions

In a reputation-driven evolutionary game system, while the en-
dogenous update mechanism of reputation is central to the long-term 
dynamics, the initial conditions—particularly the distribution of initial 
reputations—may exert a non-negligible influence on the early-stage 
formation and propagation of cooperation structures. Real-world social 
systems often exhibit heterogeneous reputation landscapes from the 
outset. For instance, some communities are characterized by a few indi-
viduals with exceptionally high reputations, while others demonstrate 
more uniform or multimodal distributions. The heterogeneity neces-
sitates a systematic investigation of how different initial reputation 
patterns condition the trajectory and robustness of cooperation.

To clarify this, we construct three representative scenarios of initial 
reputation distributions: a uniform distribution, a Gaussian (normal) 
distribution, and a bimodal distribution. On this basis, we introduce 
varying degrees of reputation sensitivity, governed by the parameter 𝑚, 
which modulates the relative weight of reputation in fitness evalua-
tions. Specifically, we consider three levels of sensitivity: 𝑚 = 0 (high 
sensitivity), 𝑚 = 0.5 (moderate sensitivity), and 𝑚 = 1 (no sensitivity). 
The resulting evolution of the proportion of cooperators is depicted in 
Fig.  6.

Our results consistently demonstrate that the initial distribution 
of reputation exerts limited influence on the long-term cooperation 
level. Regardless of the network structure or the degree of reputation 
sensitivity, the system rapidly converges to a steady state, and the 
evolution trajectories across different scenarios are remarkably similar. 
The outcome indicates that the dominant factor governing cooperation 
dynamics lies in the reputation update and strategy adoption mecha-
nisms themselves, rather than in the initial heterogeneity of individual 
standing. Moreover, the weak dependence on initial conditions un-
derscores the robustness of the reputation-driven system: cooperators 
can reliably emerge and stabilize even in environments marked by 
substantial asymmetries at the outset.

4. Conclusions

Our work proposes a reputation-driven game transformation model, 
aiming to explore the co-evolution mechanism between individual 
strategy and social status in complex networks. Importantly, we com-
bined a heterogeneous game transformation and a dynamic reputation 
feedback mechanism and depicted how the behavior choices of individ-
uals in the game process are affected by both their reputation and social 
interaction. By introducing an adaptive reputation threshold, individ-
uals are dynamically divided into high-reputation and low-reputation 
groups according to their reputation, and the types of games in which 
individuals participate are transformed into high-value and low-value 
games. At the same time, the reputation value of an individual is 
updated in real-time according to the strategies and his interacting 
partner in the game, which in turn affects his future game type and 
strategy evolution.

Based on our results, we have drawn several key conclusions. First, 
the network structure plays an important regulatory role in the evo-
lution of cooperation. In particular, lattice networks support the long-
term coexistence of competing strategies through localized connections, 
while small-world networks are more susceptible to parameter changes 
due to their high information dissemination efficiency and sensitivity 
to strategy evolution. Second, the reputation mechanism promotes the 
formation of a cooperation dominant state by dynamically adjusting the 
strategy choices of individuals. Especially in low-value games, cooper-
ation can be maintained even when the temptation factor is high. The 
threshold change in the reputation mechanism is closely related to the 
reputation sensitivity of individuals. When the reputation sensitivity is 
high, the cooperation is more likely to gain support, while when the 
sensitivity is low, defection is likely to increase. At the same time, the 
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complexity of the network structure also regulates the effectiveness of 
the reputation mechanism. It is worth noting that although the initial 
reputation distribution affects the path of cooperation evolution, it has 
little impact on the final steady state of the system.

In our work, we have studied the phenomenon of reputation-based 
game transition motivated by real life experiences, but there is still 
room for further expansion. First, multiple discrete strategies or con-
tinuous strategy spaces can be introduced to more realistically char-
acterize the strategy differences of individuals. Second, considering 
the complexity of the interaction structure in real society, the model 
can be extended to multiplex networks or temporal networks in the 
future to explore the impact of multiple relationships and dynamic 
connections on the evolution of cooperation. In addition, introducing 
random perturbations in the reputation update mechanism can help 
simulate information noise and environmental uncertainty in reality, 
and combine it with more realistic strategy update rules to improve 
the practical applicability of the model.
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