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Complex Network Modeling With Power-Law
Activating Patterns and Its Evolutionary Dynamics

Ziyan Zeng , Student Member, IEEE, Minyu Feng , Senior Member, IEEE, Pengfei Liu , and Jürgen Kurths

Abstract—Complex network theory provides a unifying frame-
work for the study of structured dynamic systems. The current
literature emphasizes a widely reported phenomenon of inter-
mittent interaction among network vertices. In this article, we
introduce a complex network model that considers the stochas-
tic switching of individuals between activated and quiescent
states at power-law rates and the corresponding evolutionary
dynamics. By using the Markov chain and renewal theory,
we discover a homogeneous stationary distribution of activated
sizes in the network with power-law activating patterns and
infer some statistical characteristics. To better understand the
effect of power-law activating patterns, we study the two-
person-two-strategy evolutionary game dynamics, demonstrate
the absorbability of strategies, and obtain the critical cooperation
conditions for prisoner’s dilemmas in homogeneous networks
without mutation. The evolutionary dynamics in real networks
are also discussed. Our results provide a new perspective to
analyze and understand social physics in time-evolving network
systems.

Index Terms—Complex networks, evolutionary games, fixation
probability, power-law activating patterns.

I. INTRODUCTION

S INCE the development of the random graph theory,
an increasing number of researchers have been paying

attention to network science. At the end of the last cen-
tury, [1] and [2] proposed the small-world and scale-free
network models, speeding up the development of network
science [3]. Generally, the complex network theory provides
a framework for the study of individual relationships and
dynamic processes in structured populations [4]. In the past
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few years, more specific network concepts, e.g., temporal [5]
and higher-order networks [6], have been employed to meet
the needs of studying social physics [7], including evolutionary
dynamics [8], [9] and epidemic propagation [10]. Besides,
some articles noticed that some real-world networks do not
simply show growth and preferential attachment characteristics
of vertices, but the death of existing vertices is also observed
as a common phenomenon [11], [12]. Feng et al. [13] noticed
that the random birth & death of individuals breaks the scale-
free property induced by preferential attachment and further
proposed the heritable mechanism to maintain the power-
law characteristic of the evolving birth & death network on
continuous time stamps. Besides, the phase transitions in
corresponding dynamic processes have also been shown to
be strongly related to the birth & death property [14], [15].
The nonlinear dynamic research in complex networks reveals
the phase transition [16] and collective behavior [17] of
dynamic processes in structured populations, such as synchro-
nization [18], the evolutionary game [19], [20], spreading [21],
and percolation [22]. Additionally, the mathematical theorems
of complex networks to describe and control diverse real
network systems are essential as well [23], [24], [25].

In the study of dynamic processes, the interevent time
between two adjacent events during the interaction is sig-
nificant in the theoretical analysis of population behaviors,
especially in the temporal networks and dynamics. In this
circumstance, an individual does not always interact with an
arbitrary neighbor, as this interaction is sometimes activated
but dormant at other time. A common assumption is that
individual actions are uniformly distributed over a period
of time and thus lead to the Poisson statistics [26], [27].
However, the empirical evidence has shown that the interevent
time of individuals in a system can follow a power-law
distribution and result in heavy-tailed statistics [28]. For
example, Roberts et al. [29] found that neuronal oscillations
exhibit non-Gaussian heavy-tailed probability distributions.
Malmgren et al. [30] demonstrated that the approximate
power-law scaling of the interevent time distribution is a
consequence of circadian and weekly cycles of human activity,
which explains the e-mail communication data precisely.
Han et al. [31] found that the heterogeneity of activation time
in time-varying networks significantly affects the spreading
threshold. A more comprehensive empirical analysis of the
heavy tails in human dynamics is given by Vázquez et al. [32],
and found that the interevent time in Web browsing, email
activity patterns, library loans, trade transactions, and the cor-
respondence patterns of Einstein, Darwin, and Freud can all be
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well approximated by a power-law distribution with different
parameters. Recent studies in brain dynamics [33], [34]
also show that given certain correlations or anti-correlations
between consecutive bursts in θ and δ, cortical rhythms
exhibit complex temporal organization, leading to power-law
distributed duration for active states. Based on the power-law
interevent assumption, researchers have studied the dynamic
processes including epidemic propagation [35] and random
walks [36]. Considering the interevent time on both the nodes
and edges, [37] proposed a generative model that produces
distributions of interevent times for both nodes and edges that
resemble heavy-tailed distributions across some scales.

This study mainly focuses on the network modeling of
the aforementioned power-law activation and its effect on
evolutionary dynamics, which reveals the formation and fix-
ation of individual strategies [38]. Since the introduction
of spatial chaos in evolutionary game theory [39], it has
become widely accepted that spatial structures enhance the
emergence of cooperative behaviors in society [40]. Later,
it was found that the spatial structure often inhibits the
emergence of cooperation [41], which challenges the con-
ventional understanding of the relationship between complex
networks and evolutionary games. Santos and Pacheco [42]
studied the weak prisoner’s dilemma and snowdrift game
based on scale-free network theory and found that scale-free
networks significantly improve cooperation density through
the influence of hub vertices [43]. To uncover the condition
for cooperation, [44] used the pair approximation method
and discovered that population preference for cooperation is
strongly correlated with the average number of neighbors.
However, this condition is not particularly effective in het-
erogeneous populations, prompting [45] to identify a closer
condition for cooperation in scale-free networks. Considering
the concept of stochastic game theory, an evolutionary game
model with game transitions was proposed by introducing the
switching of high and low games, which helps to overcome
social dilemmas [46], [47]. In addition to the above studies,
recent articles primarily focus on the evolutionary dynamics
of temporal networks [8], providing an innovative avenue for
emergent behaviors.

As mentioned previously, the interevent time of individuals’
activities in a complex network is essential for both network
structure and dynamic processes. However, to the best of our
knowledge, the effect of stochastic interevent time between
activities on closed network structure and topological proper-
ties has been largely overlooked, as well as its evolutionary
dynamics. Additionally, most real systems show the power-law
intermittent properties among individuals as stated previously.
Therefore, based on the assumption of power-law interevent
time, this study aims to model temporal networks with power-
law intermittent activities and to provide a new perspective for
understanding power-law activating patterns and evolutionary
game theory in closed, networked populations.

Therefore, we assume that there are two switching states
for vertices in a network structure, namely the activated
and quiescent states. Additionally, for each individual, these
two states switch at random intervals that follow a power-
law distribution, based on the aforementioned findings in

real-world data sets. As shown in [48], we consider the number
of activated vertices a topological property of the network.
The theoretical analysis primarily relies on Markov chain and
renewal theory [49].

The evolution of cooperation in networked systems reveals
the mechanisms underlying the propagation of altruistic
behaviors, which directly enhances the overall fitness of the
population. To measure the impact of power-law activation
patterns on the spatial evolution of cooperation, we study the
prisoner’s dilemma game [50] by incorporating the power-law
intermittent interactions of individuals into both modeling and
simulation. We assume that only activated vertices participate
in the spatial evolutionary game, including interacting with
each other, obtaining fitness, and updating strategies. An
activated vertex gains payoff from all its activated neighbors
and translates the total payoff into fitness. Various strategy
updating rules can be considered to drive the evolutionary
process of individual strategies. In this article, we employ the
death-birth process [51], which assumes that individuals with
higher payoffs are more likely to spread their strategies to their
neighbors.

The main contributions of this article are as follows.
1) A complex network model incorporating individuals’

power-law activating patterns is introduced to describe
the state switching of vertex activation. Theoretical
analysis using renewal theory is conducted to prove the
stability of activated individuals.

2) The evolutionary dynamics of the proposed power-law
activating patterns in network structures are analyzed.
The absorption of cooperative behaviors in a closed
network structure is demonstrated, and the critical con-
dition for cooperation in the prisoner’s dilemma game
is derived.

3) The proposed theorems are validated through com-
parative experiments. The fixation probability of
evolutionary dynamics is examined through computer
simulations. Furthermore, applications in real-world
network data sets are discussed.

The organization of this article is as follows: In Section II,
we introduce the complex network model with power-law
activating patterns and describe the evolutionary dynamics.
In Section III, we present the simulation methods and con-
duct experiments to validate our propositions. In Section IV,
we conclude our work and provide suggestions for future
research.

II. NETWORK MODEL AND EVOLUTIONARY

DYNAMICS ANALYSIS

As stated previously, individuals in a networked system
often exhibit intermittent activity patterns, where the interevent
time is stochastic and follows a specific probability distri-
bution, typically a power-law distribution. In this section,
we introduce our complex network model with power-
law activating patterns and analyze its evolutionary game
dynamics to examine the impact of intermittent activity
patterns on cooperation. Important notations are presented in
Table I.
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TABLE I
NOTATIONS

A. Complex Network With Power-Law Activating Patterns

1) Network Modeling Description: In order to describe the
network structure with both activated and quiescent vertices,
we introduce the stochastic switching mechanism of a vertex
between activated and quiescent states at power-law rates using
a continuous-time Markov chain. We consider an unweighted,
undirected network G = (V, E) with vertex set V , edge set
E , and N vertices. We assume that the network G represents
a closed population with no new arrivals or departures. As
described previously, two types of vertices in V undergo
a phase transition over time, including both activated and
quiescent vertices. We denote the set of activated vertices
(resp., the set of quiescent vertices) at time t as V1(t) (resp.
V2(t)), respectively.

Initially, there are V1(0) activated vertices and V2(0)

quiescent vertices in the network G. As mentioned, the inter-
mittent behaviors of individuals typically follow a power-law
interevent time distribution [28], [29], [30], [32], e.g., email
communications, neural activities, and human interactions.
Therefore, we use two independent power-law distributions
here to describe the alternating phase transitions of individual
states. If an activated vertex becomes quiescent at a certain
moment, it remains quiescent for a time t, which follows a
continuous power-law distribution with the probability density
function:

f (t; λ) = λ − 1

t0

(
t

t0

)−λ

, λ > 2 (1)

where t0 > 0 is the lower bound of the power-law distribution.
In contrast, if a quiescent vertex becomes activated at a certain
moment, it remains activated for a time t that follows the
continuous power-law distribution f (t;μ) before becoming
quiescent again, where μ > 2. We refer to λ and μ as the
power-law rates for activation and quiescence, respectively.
In this case, the state transition process of each individual
is considered a cyclic but not strictly periodic process. In
this article, we simulate networks with power-law activating
patterns using Algorithm 1.

For a better presentation, an example of the proposed
network model with power-law activating patterns is shown in
Fig. 1.

Algorithm 1 Realization of Power-Law Activating Patterns
1: Initialize G, V1(0), t = 0, and the max time T .
2: Initialize the next state transition time � for each vertex.
3: repeat
4: Find the smallest time ttemp in � and the corresponding

vertex i.
5: if i is activated then
6: Turn i into quiescent.
7: Sample i’s next state transition time to the activated

state based on a power-law distribution with the
parameter λ.

8: else
9: Turn i into activated.

10: Sample i’s next state transition time to the quiescent
state based on a power-law distribution with the
parameter μ.

11: end if
12: until t ≥ T

Fig. 1. Example of the proposed network model. Green and gray vertices
are in activated and quiescent states, respectively. (a) State transition of a
single vertex with power-law activating patterns. An activated vertex becomes
quiescent after a power-law period with the parameter μ, while a quiescent
vertex turns activated after another power-law period with the parameter λ.
(b) Evolving of network structure with the power-law activating patterns of
vertices. We consider a network with six vertices and nine edges. We show
the state transition time stamps of nodes a and d and the network snapshots
at t1 and t2. Green periods indicate the activated duration. If both ends of an
edge are activated, this edge is then activated.

2) Theoretical Analysis of the Activated Subgraph: For
convenience, we introduce the following model definitions.

Definition 1: The activated subgraph at time t is G1(t) =
(V1(t), E1(t)), where two ends of each element in E1(t) are
both activated vertices. The quiescent subgraph at time t is
G2(t) = (V2(t), E2(t)), where one end of each element in E2(t)
is a quiescent vertex.
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Apparently, we have G = G1(t) ∪ G2(t). Then, studying the
properties of G1(t) can easily induce the properties of G2(t).
In our work, we are particularly concerned about the activated
subgraph size. Therefore, we denote the following stochastic
process to describe the activated scale of the network.

Definition 2: {Xi(t), t ≥ 0, i ∈ V} is a continuous time
stochastic process with the state space �i = {0, 1} that
describes the state of the individual i, where 0 and 1 denote
the quiescent and activated states, respectively.

Definition 3: {N1(t), t ≥ 0} is a continuous time stochas-
tic process with the state space � = {0, 1, 2, . . . , N} that
describes the number of activated vertices, i.e., N1(t) = |V1(t)|.

Apparently, N1(t) is the number of individuals that satisfies
Xi(t) = 1. Besides, the stochastic processes Xi(t) and N1(t) are
continuous-time Markov chains. Before we do further analysis,
we introduce the following lemmas.

Lemma 1: A recurrent Markov chain is regenerative.
A regenerative stochastic process is allowed to restart at

some random time. Once the process restarts, we say that this
regenerative process undergoes a cycle since the last restart.
The following lemma shows the long-range property of a
regenerative process.

Lemma 2: For a regenerative process X(t), the limiting
probability to find the process in state i is [52]

lim
t→∞ P{X(t) = i} = E[Ti]

E[Tc]
(2)

where E[Ti] is the expected time that the process stays in the
state i during the cycle, and E[Tc] denotes the expected cyclic
time of X(t).

Based on Lemmas 1 and 2, we next carry out the following
proposition on the activated subgraph.

Proposition 1: If a network G with N vertices has power-
law rates λ and μ to be activated and quiescent, respectively,
the stationary distribution of the stochastic process N1(t) is
irrelevant to the initial state and follows:

Pi = Ci
N[(μ − 1)(λ − 2)]i[(λ − 1)(μ − 2)]N−i

[(μ − 1)(λ − 2) + (λ − 1)(μ − 2)]N (3)

where Pi denotes the probability of finding i activated indi-
viduals in the stationary state and Ci

N is the combinatorial
operator.

Proof: According to our previous model description, for
an arbitrary vertex i, the stochastic process Xi(t) is recur-
rent because both states are repeated infinitely as t → ∞.
Therefore, according to Lemma 1, the process Xi(t) is regen-
erative.

A cycle contains two periods, including both activated
and quiescent periods. Therefore, for an arbitrary vertex, the
expectation of the quiescent time in a cycle is

E[T0] =
∫ +∞

t0
tf (t; λ)dt = λ − 1

λ − 2
t0. (4)

Similarly, the expectation of the activated time in a cycle is
E[T1] = μ − 1/μ − 2t0. Then, according to Lemma 2, in the

long-range time, we can find a single vertex in the quiescent
state with the probability

lim
t→∞ P{X(t) = 0} = E[T0]

E[Tc]
=

λ−1
λ−2

μ−1
μ−2 + λ−1

λ−2

(5)

and in the activated state with the probability

lim
t→∞ P{X(t) = 1} = E[T1]

E[Tc]
=

μ−1
μ−2

μ−1
μ−2 + λ−1

λ−2

. (6)

Therefore, the probability to find i activated vertices in the
long-range time follows the binomial form:

Pi = Ci
N

(
E[T1]

E[Tc]

)i(E[T0]

E[Tc]

)N−i

= Ci
N

( μ−1
μ−2

μ−1
μ−2 + λ−1

λ−2

)i(
λ−1
λ−2

μ−1
μ−2 + λ−1

λ−2

)N−i

= Ci
N[(μ − 1)(λ − 2)]i[(λ − 1)(μ − 2)]N−i

[(μ − 1)(λ − 2) + (λ − 1)(μ − 2)]N . (7)

Results follow.
Proposition 1 shows that the number of activated vertices

is stable with power-law activating patterns in a closed pop-
ulation and gives the probability distribution of the activated
subgraph size of a network G with given λ and μ. Accordingly,
we have the following corollaries for further analysis and
simulation.

Corollary 1: The expected number of activated vertices is

E[N1] = N(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)
(8)

and the variance is

D[N1] = N(μ − 1)(λ − 2)(λ − 1)(μ − 2)

[(μ − 1)(λ − 2) + (λ − 1)(μ − 2)]2
. (9)

Apparently, if we consider a subgraph of G, the deduction
in Proposition 1 still holds. Therefore, we have the following
corollary.

Corollary 2: For an arbitrary nonempty subgraph G′ of G
with the size N′, the number of activated individuals is i with
the probability

P
(
N′, i

) = Ci
N′ [(μ − 1)(λ − 2)]i[(λ − 1)(μ − 2)]N′−i

[(μ − 1)(λ − 2) + (λ − 1)(μ − 2)]N′ . (10)

Corollary 1 presents the moments of the activated subgraph
size. Corollary 2 indicates the self-similarity of the entire
network and the local parts. For example, consider a subgraph
of G with a vertex and its N′ neighbors, the expected number
of activated neighbors follows binomial distribution and can
be calculated according to Corollary 2. Here, we note that we
assume the switching between activation and quiescent does
not correlate for each vertex, i.e., the activation transition of
vertex x does not affect the vertex y. This conclusion on the
local topology of one single vertex helps analyze dynamic
processes. This ends the network modeling section.
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B. Spatial Evolutionary Game Dynamics

As shown in many previous articles, network structures
have fundamental influences on the evolution of cooperation.
In addition, in time-varying networks, the change of network
structure becomes even more crucial. Based on previous
assumptions and conclusions on network structure with power-
law activation patterns, we next analyze the evolutionary
dynamics to show the impact of power-law intermittent behav-
iors among individuals on cooperation evolution.

1) Evolutionary Game Model in Networks: We consider
the evolutionary game dynamics with two strategies on the
complex network with individuals’ power-law activating pat-
terns. The strategies of individuals are cooperation (C) and
defection (D). If two individuals play the game with each
other, mutual cooperation brings each individual the reward
R, while mutual defection brings each individual the punish-
ment P. If only one individual cooperates, the defector receives
the temptation T , while the cooperator receives the sucker’s
payoff S. Accordingly, we have the payoff matrix of a game
between two players as follows:

M =
(

R S
T P

)
. (11)

We assume the most representative prisoner’s dilemma
game model (PDG), where T > R > P > S. In a
network G, each vertex is regarded as an individual in the
evolutionary game and plays PDG with its neighbors. Note that
in this article, considering the power-law activating order of
individuals, a player only interacts with its activated neighbors.
That is, the strategy dynamics only occur in the activated
subgraph G1(t) at time t. Define a vector s = (si)i∈G ∈ {0, 1}G
that describes the strategy of each vertex in the network, where
1 and 0 present the cooperator and defector, respectively. For
an individual i, it derives the payoff from all its activated
neighbors, denoted as

πi(s) = Rsis
(1)
i + Ssi

(
1 − s(1)

i

)
+ T(1 − si)s

(1)
i

+ P(1 − si)
(

1 − s(1)
i

)
(12)

where s(n)
i denotes the expected strategy of the vertex from

n-step random walk away from the focal individual i. Then,
we translate the payoff into fitness through fi(s) = 1+wπi(s),
where w ≥ 0 indicates the intensity of selection. We are
especially concerned about weak selection, i.e., 0 < w 	 1.

Regarding strategy updating, we assume that only activated
individuals update their strategies during the evolution process.
We then introduce a Poisson process to illustrate the updating
order due to the continuous-time setting. If an arbitrary
individual becomes activated at some moment, it updates
its strategy at a Poisson rate δ; that is, the timestamps for
strategy updates follow a Poisson process with parameter δ

until the individual becomes quiescent. We use the Poisson
process here since it has minimal impact on the results of
cooperation evolution, allowing us to focus on the effects
of power-law activation patterns. As mentioned previously,
the expected activation time of an individual is E[T1] =
μ − 1/μ − 2t0. The expected strategy update frequency of a

Fig. 2. Example of the strategy update. (a) Strategy update process of a C
player in the green square considers its neighbors. In a prisoner’s dilemma
game, the center vertex with the strategy D possesses the highest payoff
and fitness in the community because it connects to the largest number
of cooperators. Therefore, the center vertex has the highest probability of
spreading its strategy to the individual in the green square. (b) Time axis
shows the strategy update timestamp of three individuals during activation.
They update strategies by independent Poisson processes, thus only one vertex
can be chosen to update at one certain moment.

vertex during activation is (μ − 1)t0/(μ − 2)δ. The strategy
update rule we assume is similar to death-birth updating. If
an arbitrary activated individual x updates its strategy, each
activated neighbor spreads its strategy to x with a probability
proportional to fitness. In this case, x’s activated neighbors
with high fitness are more likely to spread their strategies
to x. We note that, due to the continuous-time setting, the
probability that at least two different vertices update their
strategies at the same moment tends to zero and can be
neglected. An example of the strategy update is shown in
Fig. 2.

Additionally, mutation can exist in evolutionary dynamics.
If we consider mutation when the strategy update event
occurs, with probability v, the focal updating vertex becomes
a cooperator or defector with equal probability regardless of
the fitness, and with probability 1 − v, this vertex undergoes
the previously mentioned strategy update process.

2) Theoretical Analysis of Evolutionary Game Dynamics:
Next, we provide some analysis of the evolutionary dynamic.
In the following derivation, we prove the absorptivity of the
population strategies and determine the critical cooperation
condition.

Proposition 2: For an arbitrary two-strategy evolutionary
game defined by (11) in the network G without mutation, the
strategies of vertices in G reach the pure cooperative state or
the pure defective state after sufficient time t with power-law
activating patterns.

Proof: Let us define qX|Y as the conditional probability to
find an X player given that the adjacent individual plays Y
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and consider the strategy update of a D individual. Here, both
X and Y stand for C or D. Among the neighbors of the D
individual waiting for a strategy update, a C player has the
fitness

fC = 1 +
k∑

i=1

wP(k, i){(i − 1)qC|CR + [
(i − 1)qD|C + 1

]
S}.

(13)

Similarly, a D player has the fitness

fD = 1 +
k∑

i=1

wP(k, i){(i − 1)qC|DT + [
(i − 1)qD|D + 1

]
P}.

(14)

The term P(k, i) is because of the Corollary 2. The probabil-
ity to find kC cooperators among the D individual’s i activated
neighbors is i!/(kC!kD!)qkC

C|DqkD
D|D. Based on the model descrip-

tion, the probability that a D individual is influenced by
its activated neighbors and becomes a C individual with
the probability kCfC/kCfC + kDfD. Therefore, using Taylor’s
formula, during a short time �t, the frequency of cooperators
increases by 1/N with the probability

P

(
�pC = 1

N

)
= δ�t

NpD∑
j=1

P(NpD, j)pD

k∑
i=1

P(k, i)

×
∑

kC+kD=i

i!

(kC!kD!)
qkC

C|DqkD
D|D

kCfC
kCfC + kDfD

+ o(�t) (15)

where pD is the frequency of the defectors.
Then, we consider the update of a C player.

Correspondingly, its one C neighbor has the fitness

gC = 1 +
k∑

i=1

wP(k, i){[(i − 1)qC|C + 1
]
R + (i − 1)qD|CS}

(16)

and one D neighbor has the fitness

gD = 1 +
k∑

i=1

wP(k, i){[(i − 1)qC|D + 1
]
T + (i − 1)qD|DP}.

(17)

The probability to find a configuration with kC cooperators
in i activated neighbors is (i!/kC!kD!)qkC

C|CqkD
D|C. According to

our strategy updating rule, the probability that a given C player
studies the strategy D is kDgD/(kCgC + kDgD). Accordingly,
during �t, the probability to find the frequency of cooperators
decreases by 1/N is

P

(
�pC = − 1

N

)
= δ�t

NpC∑
j=1

P(NpC, j)pC

k∑
i=1

P(k, i)

×
∑

kC+kD=i

i!

(kC!kD!)
qkC

C|CqkD
D|C

kDgD

kCgC + kDgD
+ o(�t) (18)

where pC is the frequency of cooperators.
According to (15) and (18), it is apparent that if pC = 0 or

pD = 0, the probability to change the cooperation frequency

is zero. Therefore, the pure cooperative and the pure defective
states are both the only absorption states, while the other states
are all transient ones. Besides, the transient states are visited
finitely, which directly leads to the conclusion.

Result follows.
Proposition 2 provides us with evidence of studying the

fixation probability of different strategies because the absorp-
tion states are always reached. Before deriving the cooperation
condition, we present the following lemma on a one-step ran-
dom walk in the complex network with power-law activation
patterns.

Lemma 3: The expected one-step random walk probability
from vertex i to j is

lij =
[

1 −
(

1 −
(

(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)

)ki
]
/ki

(19)

where ki is the degree of vertex i.
Proof: A random walk starts from i and ends at the neighbor

j if and only if j is activated. According to Lemma 2, j
is activated with the expected probability (μ − 1)(λ − 2)/

[(μ − 1)(λ − 2) + (λ − 1)(μ − 2)]. If there are d activated
neighbors (including j) around i, the probability that the focal
random walk steps into j is (1/d). Therefore, summing all the
probability from d = 1 to ki, we have

lij = E[N1]

N

ki∑
d=1

1

d
Cd−1

ki−1

× [(μ − 1)(λ − 2)]d−1[(λ − 1)(μ − 2)]ki−d

[(μ − 1)(λ − 2) + (λ − 1)(μ − 2)]ki−1
.

(20)

By (1/d)Cd−1
ki−1 = (1/ki)Cd

ki
, we have

lij =
ki∑

d=1

1

ki
Cd

ki

[(μ − 1)(λ − 2)]d[(λ − 1)(μ − 2)]ki−d

[(μ − 1)(λ − 2) + (λ − 1)(μ − 2)]ki

=
[

1 − (1 −
(

(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)

)ki
]
/ki.

(21)

Results follow.
We assume one single cooperator (resp. defector) invades

a network that all others are defectors (resp. cooperator),
and cooperation (resp. defection) finally occupies the whole
network with probability ρC (resp. ρD). If ρC > ρD, we say
that cooperation is favored in this networked population. Next,
we show the property of the critical cooperation condition in
homogeneous graphs.

Proposition 3: For the prisoner’s dilemma game with R =
b − c, S = −c, T = b, and P = 0, ρC > ρD if(

b

c

)
>

N − 2

N

[
1 −

(
1 −

(
(μ−1)(λ−2)

(μ−1)(λ−2)+(λ−1)(μ−2)

)k
]
/k − 2

.

(22)
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Proof: Suppose the networked evolutionary dynamic starts
from the state s0 ∈ {0, 1}G . We focus on the propor-
tion of cooperators at time t as S̄(t) = ∑

i∈G Si(t)/N.
Following [53] and [54], the fixation probability of cooperation
(ρC) is:

ρC = 1

N
+ w

〈
D′〉◦

u + O
(

w2
)

(23)

where D is a function of s that denotes the change of
cooperation proportion, ◦ describes the limit under neutral drift
(w = 0), and u indicates that the initial state of s contains
only one single cooperator selected from uniform distribution.
The expected cooperation proportion change is

D(s) =
∑
i∈G

si

N

⎛
⎝∑

j∈G

lijfi(s)∑
k∈G lkjfk(s)

− 1

⎞
⎠

= w

N

∑
i∈G

si

(
f (0)
i (s) − f (2)

i (s)
)

+ O
(

w2
)

(24)

where f (n)
i denotes the expected payoff from n steps away

from i. Find the first derivative of w and then we have

D′(s) = 1

N

∑
i∈G

si

(
f (0)
i (s) − f (2)

i (s)
)

= 1

N

∑
i∈G

si

(
−c
(

s(0)
i − s(2)

i

)
+ b

(
s(1)

i − s(3)
i

))
. (25)

Equation (25) can be calculated through coalescing random
walk theory. Consider two random walkers starting from
different vertices that step independently until their meeting,
the time from the beginning to the end is the coalescence time.
Denote the expected coalescence time from vertices i and j
as τij. Taking expectation of τij over all n-step random walk
from i to j, we have τ (n) = ∑

i,j∈G l(n)
ij τij/N, where l(n)

ij is the
probability that an n-step random walk starts at i and ends at j
in the network with power-law activation patterns. Results of
spatial assortment condition [54], [55] suggest that〈

1

N

∑
i∈G

si

(
s(n1)

i − s(n2)
i

)〉◦

u

= τ (n2) − τ (n1)

2N
. (26)

Since the coalescence time has the recurrence relation

τij =
{

0, i = j
1 + 1

2

∑
k∈G(likτjk + ljkτik), i �= j

(27)

we have

τ (n) = 1

N

∑
i,j∈G

l(n)
ij + 1

2N

⎡
⎣ ∑

i,j,k∈G
l(n)
ji likτjk +

∑
i,j,k∈G

l(n)
ij ljkτik

⎤
⎦

− 1

N

∑
i∈G

l(n)
ii (1 +

∑
k∈G

likτ ik)

= 1

N

(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)
N +

1

2N

⎡
⎣∑

j,k∈G
l(n+1)
jk τjk +

∑
i,k∈G

l(n+1)
ik τik

⎤
⎦

− 1

N

∑
i∈G

l(n)
ii (1 +

∑
k∈G

likτik). (28)

Rewrite τi = 1 +∑
k∈G likτik and we obtain the recurrence

τ (n+1) = τ (n) + 1

N

∑
i∈G

l(n)
ii τi

− (μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)
. (29)

Note that if n → ∞ in (29), we have

1

N2

∑
i∈G

τi = (μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)
. (30)

Additionally, the recurrence relation shows that τ (0) = 0,
and

τ (1) = 1

N

∑
i∈G

τi − (μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)
(31)

τ (2) = 1

N

∑
i∈G

τi − 2(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)
(32)

τ (3) = 1

N

∑
i∈G

τi(1 + l(2)
ii )

− 3(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)
(33)

where we drop l(1)
ii = 0 since we do not consider self-

loop. Combining (23), (26), and (31)–(33), we get the fixation
probability of cooperation under weak selection

ρC = 1

N
+ w

2N

×
⎛
⎝−c

⎛
⎝ 1

N

∑
i∈G

τi − 2(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)

⎞
⎠

+b

⎛
⎝ 1

N

∑
i∈G

τil
(2)
ii − 2(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)

⎞
⎠
⎞
⎠

+ O(w2). (34)

Reversing the payoff matrix directly leads to the fixation
probability of defection

ρD = 1

N
+ w

2N

×
⎛
⎝c

⎛
⎝ 1

N

∑
i∈G

τi − 2(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)

⎞
⎠

− b(
1

N

∑
i∈G

τil
(2)
ii − 2(μ − 1)(λ − 2)

(μ − 1)(λ − 2) + (λ − 1)(μ − 2)
)

⎞
⎠

+ O(w2). (35)

Therefore, based on Lemma 3, (34) and (35), with the fact
that ρC > ρD ⇐⇒ ρC > 1/N > ρD, we obtain the condition
as (22).

Result follows.
In Proposition 3, we present the cooperation condition

for the homogeneous network with degree k. This ends the
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model section. We have introduced the network model with
individuals’ power-law activating patterns and the evolutionary
game dynamics, which have been theoretically analyzed via
stochastic methods.

III. SIMULATION

This section first illustrates technical details in our sim-
ulation and then shows the results to verify the proposed
theorems. We first introduce our experimental methods in
Section III-A. In Section III-B, we validate Proposition 1
by giving the statistical distribution of activated network
sizes. In Section III-C, we provide the activated subgraph
degree distributions and mean degrees of Watts-Strogatz
small-world network (WSNs) and Barabási-Albert scale-free
network (BANs). In Section III-D, we analyze the resilience
and robustness of the activated subgraph caused by the
intermittent interaction. In Sections III-E and III-F, we verify
Propositions 2 and 3 by providing the results of fixation
probability on random regular graphs (RRGs) and WSNs.
In Section III-G, we present and discuss the results of
evolutionary dynamics with our proposed power-law activation
in real-world network data sets.

A. Methods

1) Power-Law Activating Patterns: As mentioned in
Section II-A, an individual stays activated for a random time
that follows the power-law distribution with the parameter μ,
and stays quiescent for a random time that follows the
power-law distribution with the parameter λ. To simulate this
on continuous time stamps, we consider the transformation
method as follows [56], [57]. The complementary cumulative
distribution function of a power-law distribution denoted in
the same form as (1) is

F(t;α) = Pr(T ≥ t) =
∫ ∞

t
f (t′;α)dt′ =

(
t

t0

)1−α

. (36)

Denote r ∼ U(0, 1) as a random number that follows a uni-
form distribution. According to the mentioned transformation
method, a variable that follows a power-law distribution with
the parameter α is

t = F−1(1 − r;α) = t0(1 − r)
1

1−α = t0r
1

1−α . (37)

The last equality holds because when r ∼ U(0, 1), we have
1 − r ∼ U(0, 1) as well.

It is worth noting that the above method may generate
very large numbers which affect the simulation of dynamic
processes. We here set an upper bound of the power-law ran-
dom number, say �, to avoid the overtime issue. We determine
the value ranges of the power-law parameters (λ and μ) and �

to minimize the simulation error. The expectation of a power-
law random number in the range [t0, �] is

E[t] =
∫ �

t0
tf (t;α)dt = α − 1

2 − α
tα−1
0 �2−α + α − 1

α − 2
t0. (38)

We set the upper bound � = 104 and the power-law
parameter α > 2.5 to ensure α − 1/2 − αtα−1

0 �2−α → 0,
leading to acceptable errors.

In our simulations, each individual becomes activated or
quiescent initially with equal probability (50%). If a vertex is
activated in a moment, we generate a random time based on
(37) with α = μ to keep its state, and then becomes quiescent.
Similarly, if a vertex becomes quiescent, a random time with
α = λ is generated for the quiescent state and then the vertex
becomes activated.

2) Poisson Process: We assume each activated vertex
updates the strategy by a Poisson process with the parameter
δ = 1. Accordingly, the interevent time of the strategy
update occurrence follows an exponential distribution with
the parameter δ = 1. Once a vertex becomes activated from
quiescent, we generate a set of exponentially distributed time
stamps as the strategy update time until it becomes quiescent
again.

3) Network Structure: We consider three types of gen-
erative networks. 1) RRGs: each vertex is connected to k
neighbors randomly. 2) WSN: WSN is constructed by random
reconnection (here with probability p = 0.40) of a nearest-
neighbor couple network with the mean degree k [1]. 3) BAN:
BAN is constructed by growth and preferential attachment,
i.e., each new vertex connects to m existing nodes with the
probability proportion to degrees and yields the mean degree
as k = 2m [2].

4) Experimental Environment: We establish all the follow-
ing experiments based on Python 3.8. We employ the package
networkx to generate a network structure and numpy.random
to generate the random time sequences.

B. Statistical Characteristics of Activated Subgraph Size

We first conduct simulations on the sizes of the activated
subgraph (G1(t)) to validate Proposition 1. Notably, the scale
of the activated subgraph is independent of network type;
therefore, this section does not treat network type as a
variable. Fig. 3 shows the frequencies of activated vertex
numbers for an initial network size of N = 1000. We set
the power-law rates as [2.60, 3.50, 6.40] for cross-simulation.
The red, green, and blue points represent the experimental
size distributions for μ = [2.60, 3.50, 6.40], respectively,
while the black solid lines correspond to the theoretical
results derived from (3). The close agreement between the
theoretical and experimental results confirms the accuracy of
Proposition 1 in describing real systems. The results in Fig. 3
suggest that during the evolution process, the size of the
activated subgraph follows a consistent probability distribution
despite heterogeneous activation patterns. Specifically, if λ

is fixed, a smaller μ leads to a higher size expectation.
Similarly, if μ is fixed, a larger λ ensures a greater activated
subgraph size.

To further demonstrate the effectiveness of the mentioned
proposition, we here employ the Kullback-Leibler (KL) diver-
gence to describe the distances between two probability
distributions, denoted as KLQ||P = ∑

i Qi log Qi/Pi, where
Pi is denoted in (3) as the theoretical results, and Qi is the
experimental frequency of activated subgraph. Calculating the
KL divergence directly may exceed the computer’s upper limit.
Therefore, we transfer (3) and calculate Pi after logarithmic
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(a) (b) (c)

Fig. 3. Size distributions of the activated subgraph. The activated subgraph size shows binomial distribution as Proposition 1 suggests. (a) λ = 2.60.
(b) λ = 3.50. (c) λ = 6.40. We set μ = [2.60, 3.50, 6.40] and network size N = 1000 for cross simulation. Initially, each vertex has the equal probability to
be activated or quiescent. We collect the sizes of activated subgraphs if t > 50 and calculate the frequencies until t = 600. Results for μ = 2.60, 3.50, and
6.40 are shown in red, green, and blue, respectively. Black plots indicate the theoretical distribution as Proposition 1.

TABLE II
KL DIVERGENCE OF THE THEORETICAL AND

EXPERIMENTAL DISTRIBUTIONS

mapping by

log Pi = log Ci
N + i log (μ − 1)(λ − 2) + (N − i)

log (λ − 1)(μ − 1)) − N log(μ − 1)(λ − 2)

+ (λ − 1)(μ − 2). (39)

In Table II, we present values of the KL divergence between
theoretical and experimental distributions. For all parameter
sets, the results are close to zero, which indicates small
distances. Accordingly, we can conclude that Proposition 1 is
an accurate theoretical result. We note that the KL divergence
results are obtained with the fact that our algorithm to generate
power-law random time is biased to avoid the low probability
overflow as mentioned above in Section III-A.

C. Network Topology of Activated Subgraph

We now focus on the network topology properties of the
activated subgraph. We employ two of the most representative
network models as introduced in Section III-A, including the
WSNs and BANs. As shown in Fig. 4, we obtain several
groups of degree distributions of activated subgraph for dif-
ferent k ([8, 16, 24]) and μ ([2.60, 3.70]) with fixed λ = 3.50
and N = 2000. The degree frequency functions of activated
subgraphs are shown in t ∈ (20, 200) with the step �t = 10.

The degree distribution results are shown to remain stable
over time. Fig. 4(a) and (b) present the results based on WSNs
using double-linear axes. In a WSN, the degree distribution
is homogeneous with an expected value of k. Under the
proposed power-law activation patterns for vertices, the degree
distributions of the activated subgraph remain homogeneous
but exhibit a smaller expectation. This phenomenon aligns
with the theoretical results in Corollary 2. Fig. 4(c) and (d)

(a) (b)

(c) (d)

Fig. 4. Degree distributions of the activated subgraph. The power-law activa-
tion patterns maintain the homogeneity of WSN but break the heterogeneity
of BAN. (a) WSN, μ = 2.60. (b) WSN, μ = 3.70. (c) BAN, μ = 2.60.
(d) BAN, μ = 3.70. We fix the parameters N = 2000, λ = 3.50 and set
μ = [2.60, 3.70], k = [8, 16, 24] for cross experiments. We collect the degree
distributions if t > 20 every 10 simulation time until t = 200. Results for
k = 8, 16, and 24 are shown in red, green, and blue, respectively. Degree
distributions of WSNs and BANs are shown in double-linear axes and double-
logarithmic axes, respectively.

display the degree frequencies of activated subgraphs for
BANs using double-logarithmic axes to facilitate comparison
with linear axes. The degree distributions of BANs appear as
a straight line in double-logarithmic coordinates, indicating
the heavy-tailed nature of these networks. However, the vertex
power-law activation patterns reduce this heavy-tail property in
the activated subgraph, resulting in a more homogeneous struc-
ture. Specifically, the degree distributions show an increase
in low-degree vertices, while the heavy tail persists for high-
degree vertices. Moreover, the probability of encountering a
low-degree vertex is higher when k is smaller. A plausible
explanation for the reduced heterogeneity in BANs is that
high-degree vertices in the underlying network tend to have
many quiescent neighbors, which decreases their degree in
the activated subgraph G1(t). Additionally, since the minimum
degree in a BAN corresponds to the new connection number

Authorized licensed use limited to: Minyu Feng. Downloaded on March 21,2025 at 01:42:36 UTC from IEEE Xplore.  Restrictions apply. 



ZENG et al.: COMPLEX NETWORK MODELING 2555

TABLE III
SKEWNESS AND KURTOSIS OF DEGREE DISTRIBUTIONS

m, several vertices with degree m have independently and
identically distributed activated neighbors, as indicated by
Corollary 2.

To further study the characteristics of the degree distribu-
tions, below we present the statistics of the degree distributions
in Table III. The skewness is the third-order normalized
moment that describes the deviation direction and degree.
The kurtosis is employed to describe the peak height at the
average value of the curve, where 3.0 is subtracted from
the result to get 0.0 for a normal distribution. As shown
in the results for WSNs, the skewness and kurtosis are all
close to zero, indicating a symmetric degree distribution and
moderate kurtosis. Based on this, we conclude that the power-
law activating patterns of vertices maintain the homogeneous
property of the WSNs in the activated subgraph. In addition,
the skewness of the activated subgraph degree distribution in
WSNs decreases as the increase of k and shows little right
deviation. However, for BANs, the skewness and kurtosis are
all greater than zero. The skewness decreases as k increases
and shows a stronger right deviation than the WSNs. Results
in Fig. 4 present that the activated subgraph of a BAN
with power-law activating patterns shows a peak in degree
distributions. Combined with the obtained kurtosis, the degree
distributions are high and pointed. Accordingly, we conclude
that the heterogeneity is split in BANs with the power-law
activating patterns.

The power-law activating patterns can affect the number
of activated vertices around a single node, changing the
mean degree of the activated subgraph. In Fig. 5, we present
the mean degrees of activated subgraphs for four different
networks, including two real network data sets. Here, we
discuss λ ∈ [2.60, 6.40] and μ ∈ {2.60, 3.50, 6.40} for
cross simulations. We note that the mean degrees of the
activated subgraphs increase as the activation rates λs grow.
Additionally, a small quiescent rate μ ensures the large mean
degree of the activated subgraph. This shows similar properties
compared to the conclusion on the activated network sizes.
The used real network data sets in Fig. 5(c) and (d) are
from [58], [59], and [60].

D. Network Resilience and Robustness With Power-Law
Activation

From Proposition 1, an activated vertex is possible to be
isolated. Additionally, the bridges in the network can also
break, forming several components spontaneously due to the
intermittent activation. Therefore, we can directly analyze the
network resilience and robustness caused by the power-law

(a) (b)

(c) (d)

Fig. 5. Mean degree as the function of λ. Mean degrees of activated subgraphs
have positive correlations to λ. (a) WSN, N = 500, k = 4. (b) BAN, N = 500,
k = 4. (c) Mouse visual cortex network, N = 193. (d) Infect Dublin, infectious
contact network, N = 410. We set λ ∈ [2.60, 6.40] and μ ∈ {2.60, 3.50, 6.40}
for cross simulations. We collect the mean degrees of activated subgraphs in
the time interval t ∈ [50, 150] and take the average for each data point. The
results for μ = 2.60, 3.50, 6.40 are shown in red, green, and blue curves,
respectively.

(a) (b)

(c) (d)

Fig. 6. Relative sizes of the largest component. (a) WSN, N = 500,
k = 4. (b) BAN, N = 500, k = 4. (c) Mouse visual cortex network, N =
193. (d) Infect Dublin, infectious contact network, N = 410. We set λ ∈
[2.60, 6.40] and μ ∈ {2.60, 3.50, 6.40}, collect the relative sizes of the largest
component in the time interval t ∈ [50, 150] and take the average for each
data point. The relative size is the ratio of vertices in the largest component
of the underlying network.

activation patterns. In Fig. 6, we show the relative sizes of the
largest component as functions of the activation rate λ. This
quantity is calculated by the ratio of the vertices in the largest
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(a) (b)

(c) (d)

Fig. 7. Cooperation density as the function of time. The strategies of
evolutionary dynamics evolve into pure absorb states without mutation.
(a) RRG, cooperator invades in pure defection. (b) RRG, defector invades in
pure cooperation. (c) WSN, cooperator invades in pure defection. (d) WSN,
defector invades in pure cooperation. For parameters, we set b = 12, k = 8,
c = 1 for both RRG and WSN, and reconnection probability 0.4 for WSN.
The power-law activating patterns are with λ = 3.50 and μ = 3.70. We plot
the evolutionary trajectory of the cooperation frequency to demonstrate the
absorptivity of the evolution process for 500 times in each figure. We stop
plotting until pC = 1 or pC = 0. Red and blue curves present the trajectory
of the fixation of cooperation and defection, respectively.

component of the activated subgraph. Due to the temporal
links in the activated subgraph, we take the average of this
quantity against time. Our results suggest that the relative size
of the largest component grows as the increase of λs, which
has a positive correlation with the number of activated vertices
suggested in Corollary 1.

From Fig. 6(a) and (b), the relative sizes of WSNs are
usually higher than ones in BANs. In the WSN, most vertices
have degrees that are close to the expectation. Therefore,
the probability for one single vertex to be isolated, as well
as breaking the bridge in the network, is relatively lower.
However, in the BAN, most vertices have minimal degrees,
and hub vertices are connected with many neighbors with
low clustering coefficients. Once the hub vertices are not
activated, the center of the network breaks down and leaves
several connected components. Accordingly, WSNs are likely
to maintain more vertices in the largest components than
BANs. The same is true in Fig. 6(c) and (d). The mouse
visual cortex network has more hub vertices and is more
heterogeneous, leading to relatively weak robustness against
the power-law activation patterns.

E. Absorptivity of Evolutionary Dynamics

Before we further explore the fixation probability, we
perform some repeated and independent experiments to show
the absorptivity of the evolution processes, which guarantees
that the strategy is absorbed instead of oscillating. We employ
the RRG and WSN with k = 8 and perform the simulation
for cooperator invasion and defector invasion, respectively.
Results in Fig. 7 show that the evolution processes converge

to one of the pure cooperation and pure defection states.
In this parameter setting, the cooperators are more likely to
occupy the entire network than the defectors. Additionally, the
absorption states are reached around t = 103.

F. Evolution of Cooperation on Homogeneous Networks

We employ the prisoner’s dilemma game as stated in
Section II-B (R = b − c, S = −c, T = b, and P = 0
with fixed c = 1 and b ∈ (1, 20]) and consider network
structures (G) as RRG and WSN. For a better presentation,
we denote present ρC − ρD in the following experiments.
Regarding other parameters, we fix λ = 3.50 and μ = 2.60.
Here, we note that these sizes are sufficient for the study of
fixation probability as [44], [46], and [54] suggest. We set
k = [4, 8, 12, 16] and N ∈ [100, 1000] for cross experiments.
To approximate the fixation probability of cooperation, we
randomly select one individual in the pure defective network
as the invading cooperator for each group of parameters and
run the evolutionary dynamics repeatedly and independently
over 2 × 103 and 5 × 104 times for N = 1000 and 100,
respectively. The frequency that cooperators take root in the
population in the total experiment times is regarded as the
fixation probability of the cooperation ρC. For the fixation
probability of defection, we randomly select one individual
as the invading defector in the pure cooperative population
and perform similarly to approximate ρD. We have mentioned
that ρC > ρD is the condition for cooperation in a networked
population. Therefore, we present ρC − ρD as functions of b
to show the results in Fig. 8.

As shown in Fig. 8 and suggested in Proposition 3, the
power-law activating patterns can influence conditions for
cooperation. This conclusion is accurate if the mean degree
is small (or N � k) as shown in Fig. 8 for each group
of parameters. Concretely, the condition for cooperation is
sound (sufficient and necessary) when k = 4 and 8 in the
simulation. However, if we increase the degree to k = 12
and 16, this condition in (22) becomes sufficient but not
necessary. The obtained data points and fitting lines are
often already greater than zero if (b/c) is greater than the
critical value. Here, we note that errors exist caused by the
small bias of simulations. With the increase of degree k,
the power-law activating patterns increase the relaxation of
critical cooperation conditions. Therefore, social systems with
large average connections do not need the cost-to-benefit ratio
equivalent to (22) to overcome social dilemmas with the
power-law activating patterns.

In Fig. 9, we further consider mutation-selection dynamics
in RRGs and WSNs. With mutation, the network does not
reach the absorbing state, and cooperation is favored if the
expected number of cooperators is higher than defectors, i.e.,
the frequency of cooperators is higher than 0.5. As shown
in Fig. 9(a) and (b), we find that RRGs guarantee more
cooperators in the population than WSNs, especially when
the degree is relatively large. For example, if k = 4, the
conditions for cooperation in RRG and WSN are both around
b/c = 5. However, if k = 8 and 12, the critical conditions
for cooperation in RRGs that we obtain by simulation are
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(a) (b)

(c) (d)

Fig. 8. Fixation probabilities of the prisoner’s dilemmas in homogeneous
networks. The theoretical condition for cooperation is sufficient but not
necessary, especially for the large degree network. We fix λ = 3.50, μ = 2.60,
c = 1. (a) and (b) show the results on RRGs and WSNs with N = 1000,
respectively, and (c) and (d) show the results for N = 100. For variable
parameters, we set b ∈ (1, 20], and k ∈ [4, 8, 12, 16]. Red triangles, blue
circles, green crosses, and black squares show the result for k = 4, 8, 12, and
16, respectively. Each data point is obtained by calculating the frequency of
the final pure state in the evolution in the total 2×103 and 5×104 independent
and repeated experiments for N = 1000 and N = 100, respectively. The solid
lines in the same colors are the fitting lines to show the overall trends, which
are obtained by linear regression. The dashed lines in the same colors present
cooperation conditions for cooperation in Proposition 3. The results show that
our theorem holds for N � k and becomes biased with the increase of degree.

(a) (b)

Fig. 9. Stationary cooperation frequency of the prisoner’s dilemmas in
homogeneous networks with mutation. RRGs promote cooperation with
mutation greater than WSNs. In this figure, we set N = 1000, v = 0.10, λ =
3.50 and μ = 2.60 in RRGs and WSNs. We fix c = 1 for game parameters
and observe the average cooperation frequency for b ∈ (1, 20]. Each data
point is obtained by calculating the mean frequency in the total 104 times
after the stable state is reached. Red triangles, blue circles, and green crosses
present the results for k = 4, 8, and 12, respectively. The fitting lines are
shown in the same colors, obtained by linear regression.

smaller than those in WSNs. Additionally, the exact solution
of evolutionary dynamics with mutation is still an open issue.

G. Evolution of Cooperation on Real Networks

In addition to the generative networks, we use four real-
world network data sets to further discuss the effect of
power-law activating patterns on the fixation of cooperation.
Our employed real networks are [60]: i) the dolphin network,
the interaction relationship of 62 dolphins, |E | = 159, ii) the
USA contiguous network, the border of 49 states in America,
|E | = 107, iii) the retweet network, retweets among 96
Twitter users, |E | = 117, and iv) the collaboration network

(a) (b)

(c) (d)

Fig. 10. Fixation probabilities of the prisoner’s dilemmas in real networks.
We fix λ = 3.50, μ ∈ {2.60, 3.70}, and c = 1. (a) Dolphin network, (b) USA
contiguous border network, (c) Retweet network, and (d) collaboration
network of Sandia National Laboratories. For each curve, we show ρC − ρD
in b ∈ (1, 10] with 15 data points. The results for μ = 2.60 and μ = 3.70
are presented in red and blue triangles, respectively. The fixation probabilities
for cooperation and defection are obtained by averaging 105 independent
experiments. The solid lines in the same colors are the fitting lines to show
the overall trends, which are obtained by linear regression.

of 86 scientists at Sandia National Laboratories |E | = 124.
Using these four networks as the underlying network G, we can
study the effect of power-law intermittent interaction among
individuals on the evolution dynamics of cooperation.

From the results in Fig. 10, we find that μ = 2.60 can
yield a less strict condition for the fixation of cooperation
than μ = 3.70. The cost that each individual should pay to
maintain the cooperation is lower for μ = 2.60. Additionally,
our focal quantity ρC − ρD increases faster with the growth
of b if μ = 2.60. According to Proposition 1, the increase
of μ leads to a greater probability of finding a vertex in the
quiescent state, which causes fewer neighbors to interact with
on average. Namely, a large mean degree of the activated
subgraph is beneficial to the fixation of cooperation, which
is against previous findings on the condition for cooperation
based on network degrees [44], [45], [46]. A similar trend is
also shown in Proposition 3, but the exact solution for the
success of cooperation on any network structure is still an open
issue in this article. The intermittent interaction of individuals
may be the reason for real-life populations to overcome social
dilemmas and achieve cooperation.

IV. CONCLUSION

In this article, we emphasize the power-law interevent
time of vertices in complex networks and propose power-law
activating patterns based on continuous Markov chain theory.
In the proposed model, we assume that each vertex in the
network switches between two states (activated and quiescent)
with power-law rates, i.e., each vertex stays in each state
for a random time that follows two independent power-law
distributions. We find a homogeneous stationary distribution of
activated vertex numbers and give some statistical properties.
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To examine the dynamic process in the proposed network
model, we employ the two-person-two-strategy evolutionary
game theory and study the fixation probability and critical
cooperation condition. We show that the strategic combination
of the population evolves to one of the pure cooperative or
defective states, and the power-law activating patterns can
influence both the fixation probability and the cooperation
condition.

Our most significant findings in this article are the homo-
geneous stability of network sizes with heterogeneous activity
patterns and its positive effect on cooperation in evolutionary
dynamics. We note that this topic can be further studied by
importing more general assumptions to fit the real world. For
example, the power-law distribution of the interevent time is
the most common one of the many situations. Exponential
distributions, power-law distributions with exponential cut-
off, and log-normal distributions are also found in real-world
data sets. Our study on power-law activating patterns can
be extended to any probability distribution. Additionally,
the correlation of activation among vertices can lead to
different results on both network topology and evolutionary
dynamics. As we have discussed, the cooperation condition
that we obtained theoretically is sufficient but not neces-
sary. The precise (sufficient and necessary conditions) critical
condition for the cooperation of the evolutionary dynamics
is still not clear in this article. In addition to the evolu-
tionary dynamics, other dynamic processes (e.g., epidemic
propagation, synchronization, and percolation) are vital in
understanding the effects of network structures. Therefore,
studying vertex phase switching on these dynamic processes is
essential to further capture the effect of interevent interaction
patterns.
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