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ABSTRACT

While actors in a population can interact with anyone else freely, social relations significantly influence our inclination toward particular
individuals. The consequence of such interactions, however, may also form the intensity of our relations established earlier. These dynamical
processes are captured via a coevolutionary model staged in multiplex networks with two distinct layers. In a so-called relationship layer, the
weights of edges among players may change in time as a consequence of games played in the alternative interaction layer. As an reasonable
assumption, bilateral cooperation confirms while mutual defection weakens these weight factors. Importantly, the fitness of a player, which
basically determines the success of a strategy imitation, depends not only on the payoff collected from interactions, but also on the individual
relationship index calculated from the mentioned weight factors of related edges. Within the framework of weak prisoner’s dilemma situation,
we explore the potential outcomes of the mentioned coevolutionary process where we assume different topologies for relationship layer. We
find that higher average degree of the relationship graph is more beneficial to maintain cooperation in regular graphs, but the randomness
of links could be a decisive factor in harsh situations. Surprisingly, a stronger coupling between relationship index and fitness discourage
the evolution of cooperation by weakening the direct consequence of a strategy change. To complete our study, we also monitor how the
distribution of relationship index vary and detect a strong relation between its polarization and the general cooperation level.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0188168

I. INTRODUCTION

In the development of human civilization, despite conflicts
that have woven through history, cooperative behaviors have con-
sistently manifested themselves. The exploration of cooperation in
evolutionary dynamics constituted an enduring scholarly pursuit
theoretically based on evolutionary game theory. Within the realm
of strategy-making, social dilemmas symbolize the inherent tension
between individual and collective interests within the population. A
pivotal and frequently used model in evolutionary game theory is

Social mechanisms are extensively studied to explain the forma-
tion of cooperators within networked populations. Interactions
are characterized by a network, vertices represent agents engaged
in evolutionary games, while edges can signify a variety of dis-
tinct connections between them. Moreover, multiplex dynamical
networks provide a more suitable framework for a profound
understanding of the simultaneous evolution of individual and
collective states. Our study follows this research path where a
multiplex structure is introduced including a relationship and an
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interaction layer. These layers affect each other simultaneously
and our main focus is to follow their coevolution. To emphasize
the importance of established relations, we assume that the fitness
of a player depends not only the payoff gained from interactions
but also on the quality of personal relations. The latter is char-
acterized by a relationship index which is subject to permanent
change due to a coevolutionary process. We monitor how the dis-
tribution of this index changes by assuming different topologies
of the relationship layer.

the prisoner’s dilemma, which offers agents the binary choices of
becoming cooperators or defectors.’

The seminal work of Nowak and May has demonstrated that
spatial setting of competitors, captured by a topological graph, could
effectively enhance the evolution of cooperative behavior.” Subse-
quently, researchers concentrated on studying evolutionary games
on various spatial topologies, including regular lattices,”* scale-free
networks,” small-world networks,” and other complex networks.’
As an early summary of our understanding, Nowak distilled five
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mechanisms that drive the evolution of cooperation.” Through the
creation of a dynamic effective network, it became evident that
introducing autonomy promotes cooperative behavior.” As a further
step, Civilini and his colleagues discussed an evolutionary game on
hypergraphs where agents made choices between a risky option and
a safe one."” Considering that agent payoffs are usually random in
real situations, Zeng et al. argued that each agent’s payoff follows
a specific probability distribution with fixed expectations.'' Build-
ing upon models with two players and two or three possible actions,
Shi et al. investigated the dynamics of Q-learning within multi-agent
systems.

Coevolutionary rules introduced in evolutionary games capture
the dynamic evolution of both strategies and the environment, hence
offering a more accurate description. Initiated by Zimmermann
et al'’ and influenced by the rapid advancements in net-
work science, this field of research had since flourished as a
promising avenue for addressing social dilemmas and promot-
ing cooperation.”” Coevolutionary rules could affect the interaction
network,'’ the size of the network,'” agent selection,'® or even indi-
vidual mobility.”” Moreover, evolutionary game theory in a net-
worked population and its various extensions, like mixing game
and multi-game, has been proven as an effective way to resolve the
social dilemma.'*"” A new spatial evolutionary game model explored
cooperation by dynamically adjusting link weights among agents
based on a comparison between their reputation and the average
reputation of their nearest neighbors.”’ Mao et al. investigate how
individuals’ collective influence and strategy-updating time scales
affect cooperation evolution.”’

Various network models have been suggested to address the
problems of collective behavior over the past decades, includ-
ing multilayer networks,”>”* temporal networks,” and higher-order
networks.”” These novel network models served as the foundation
for studying spatial evolutionary games. “Multilayer networks” was
indeed a broad and general term, it could be further categorized
into specific types,”® including multiplex networks,”””* interdepen-
dent networks,”~’! and interconnected networks,”>*>** which pro-
vided more specific distinctions based on the nature of the network
connections and interactions. For instance, Gémez-Gardefies et al.
demonstrated that the multiplex structure of interdependent net-
works enhanced the resilience of cooperative behavior.”* A recent
work examined how various strategy-updating time scales impact
the evolution of competing strategies, such as cooperation, defec-
tion, and extortion, in a double-layer lattice.”” Furthermore, multi-
plex networks were extensively used in network epidemic spread-
ing models, enabling a more realistic exploration of the mecha-
nisms involved in the interaction of multiple messages within social
topics.””” Because of its practical importance multiplex networks
frequently provide an adequate topological framework to study
social dilemmas in evolutionary games. For example, an early work
introduced the evolutionary game dynamics on structured popu-
lations where individuals take part in several layers of networks.™
Additionally, Yu et al. delved into the impact of individuals’ het-
erogeneous properties and the multilayer nature of networks on the
evolution of cooperation.” Furthermore, Hayashi et al. proposed
a coevolutionary model in which strategy and layer selection are
coupled hence each individual selects a layer and plays the social
game with neighbors.” Also in a coevolutionary framework, Yang
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et al. introduced a model to study the impact of coordinating
dynamic processes on the spread of strategies within evolving mul-
tilayer networks.*

In the real world, networks are often not only multilayered but
also coevolutionary. Typically, agents usually conduct interpersonal
relationships before engaging in evolutionary games. Moreover,
during such games, agents do not necessarily interact with all their
neighbors but may make selective choices.” However, just a few
published works paid attention to the interplay of relationship and
neighbor selection based on a coevolutionary multiplex network in
a social dynamics. This aspect, however, is a common phenomenon
in real-life situations. To fill this gap, we assume that the dynamics
governing the interactions among agents can be effectively cap-
tured by modeling them through distinct layers of a multiplex graph.
Each agent has the opportunity to conduct relationships with other
agents before interaction, leading to a greater willingness to inter-
act with neighbors declared by the relationship graph. Throughout
a coevolutionary process, following each round of games, the rela-
tionships between agents are influenced by their chosen strategies.
More precisely, mutual cooperation strengthens an actual link, while
simultaneous defection weakens it. As a consequence of bond evo-
lution, the strengths of neighboring links also affect the individual
fitness of focal player which is considered by an additional term
via a relationship index, hence giving a novel perspective to the
coevolutionary process.

This paper is organized as follows: we first introduce the
applied social game and construct the proposed multiplex net-
work. Section I also explains the coevolutionary rule used during
the simulation process. Our results, obtained on different rela-
tionship graphs, are summarized in Sec. III. This section also
discusses the connection between the time evolution of relation-
ship index distribution and general cooperation level. We con-
clude with the summary of our findings and a discussion of
their implications in Sec. IV. Last, some future outlooks are also
considered.

Il. MODEL

It is a ubiquitous phenomenon that there exists a complex
interplay of mutual influence between the relationships and interac-
tions among agents in social dilemma. In this section, we introduce
a spatial coevolutionary model for the weak prisoner’s dilemma
(WPD) played on multiplex networks. We consider that each
agent is willing to establish relationships with some other agents
before playing the game, and the level of relationship between
them could be different. To model this process, we construct a
multiplex network that consists of two layers: a so-called relation-
ship layer and an interaction layer. Our primary focus lies in the
coevolution of agents’ strategies and network structure, which is
distinctly manifested in terms of cooperation density and inter-
personal relationships among agents. We first define the WPD
model characterizing the social dilemma, which is followed by
the construction of evolutionary dynamics on multiplex networks.
This also involves to elucidate the concepts of extended agents’
fitness and the strategy update rule governing the microscopic
dynamics.
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A. Weak prisoner's dilemma

In a typical prisoner’s dilemma, each agent has two distinct
strategies: cooperation (C) or defection (D). During each round of
interaction, both agents independently and simultaneously make
their strategy choices. If both agents choose to cooperate, they each
receive a reward denoted as R. Conversely, if both agents decide to
defect, they both receive a payoff represented as P. However, when
an agent chooses the defection strategy and encounters a neighbor
who has chosen cooperation, the defector receives a higher payoff
denoted as T, while the cooperative neighbor receives a lower payoff
represented as S. Herein, the rank T > R > P > § ensures the fun-
damental characteristics of the prisoner’s dilemma game, in which
the incentive for defection outweighs that for cooperation irrespec-
tive of the opponent’s choice. For simplicity, but keeping the essence
of the social frustration,” we employ the WPD parametrization by
setting R =1, T = b, and S = P = 0, where the parameter b varies
inthe 1l < b < 2 interval.

B. Multiplex networks

To represent the above explained coevolutionary process faith-
fully, we construct a multiplex network where two layers are estab-
lished. The two-layer structure allows for differentiation between
the structural aspects of relationships (captured in the relation-
ship layer) and the actual interactions and behaviors (captured in
the interaction layer). The use of a multiplex network is justified
when the interplay between structural relationships and behavioral
interactions is crucial for understanding the system’s dynamics.

In the relationship layer, each vertex represents an agent, and
each edge denotes the relationship between two agents. Further-
more, each edge is characterized by a specific weight to indicate the
reliability of the relationship between the involved agents. Initially,
we assume that the weight of the edge is uniformly distributed in the
range [0, 1], which implies that any value of the edge weight between
node i and j [denoted as W(i, j)] within the interval of 0-1 is equally
likely.

For the interaction layer, each vertex has an equivalent in the
relationship layer, i.e., represents the same agent. However, a key
distinction lies in the fact that, in the interaction layer, agents proba-
bilistically select neighbors for actual strategic interactions based on
their structural positions in the relationship layer. In other words,
the interaction layer is the arena where the actual dynamical evo-
lution of strategic interactions occurs. At each time step, all agents
can play the WPD against their chosen neighbors in the interaction
layer. Furthermore, when two corresponding nodes are connected
by an edge in the relationship layer, then there is a p probability of
game in the interaction layer. Conversely, if the corresponding two
nodes are not linked in the relationship layer, a game is played with
a probability of (1 — p) in the interaction layer. The latter process
mimics the free will of players to interact with anybody else in the
whole population.

As a crucial element of our model, we assume that game strate-
gies also affect the W weight values of edges in the relationship layer.
If both neighboring agents choose cooperation then the weight of
their edge will increase by €. If both agents defect, the weight of their
edge will decrease by e. Otherwise, for unilateral cooperation the
weight value remains intact. As a technical note, the weight value
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only changes to keep W in the [0, 1]. In a special case, when there
is no association between the interacting agents, the relationship
layer remains unchanged. In brief, the aforementioned rules can be
expressed as

[W(@,j) +€lp, Si=Cand§; =C,
W(i,j) = { [WG,j) —ell, S;=DandS; =D, (1)
W, j), otherwise,

where S; and S; are the game strategies of agent i and j, respectively.
denotes the change in the weight of related edge in the relationship
layer, influenced by the strategies of involved agents. Here, we use
the operator -] (1) as

0, a<0,
[a](l) ={a, 0<ac<l, (2)
1, a>1,

which ensures that the weight values always remain in the [0, 1]
interval.

C. Strategy evolution

In real-world social systems, fitness is often determined not
only by payoffs but also encompasses various non-monetary factors
such as reputation.’>"* But the quality of our relations could also be a
benefit that can hardly be described by a payoff value. Motivated by
this fact, we here introduce a relationship index as one of the ingre-
dients of fitness. Accordingly, we define a relationship index A; of
node i as

A,‘ == E,EVW(I,]), (3)

where V is the set of all neighbors in the network, and each edge
e(i, ) in the relationship layer possesses a weight denoted as W(3, j).
It is important to stress that the introduced relationship index can-
not be considered as a sort of reputation because its value also
depends on the behavior of the partner. Instead, a particular W value
dedicated to a link characterizes the quality of their cumulative inter-
action. But of course, the value of A, which is calculated from all
links of a player, may characterize the individual behavior of an actor
indirectly.

In agreement with common experience, we presume that
agents who have more intensive relationships with other agents in
the relationship layer exhibit higher fitness level. We postulate that
fitness is proportional to both the payoff and the relationship index.
To keep our model simple, we apply an additive approach and use a
weight factor to adjust the relative significance of these two factors.
Therefore we evaluate the fitness of agent i according to

fi(IT;, A) =TT, + mA;, (4)

where IT; represents the payoff of node i and A; is the relationship
index to i. The weight factor m is between 0 and 1, to adjust the
relative importance of payoffs and the cooperation index.

After accumulating the fitness in each round, all agents get a
chance to update their strategies. Notably, each agent can only learn
the strategies from their neighbors in the relationship layer. Hereby,
an agent i selects a neighbor j in the relationship layer with the
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probability

), 5)

for a potential strategy imitation.

Next, the probability that agent i adopts the strategy of agent j
in the upcoming round of the game is determined by
1

5 i (M)
e K

r(s—s)= (6)

1+

where parameter K describes the uncertainty of strategy imitation.
When K — 0, the strategy updating is definite. In that case, if j’s pay-
off is higher than ’s, i adopts the strategy of j with probability 1. On
the contrary, if j’s payoff is lower, i cannot adopt j’s strategy. In the
other extreme case, when K — oo, player i updates the neighbor’s
strategy randomly independently of fitness values. In this work, we
set to K = 0.1 which allows a strong selection with a certain noise.

To summarize our model, Fig. 1 illustrates a typical scenario
where agents in the relationship layer hold different relationships,
quantified by the weights of edges. Each agent possesses an indi-
vidual relationship index, influenced by the varying level of asso-
ciation with their neighbors, reflecting the diversity in the strength
of interpersonal connections among individuals. The agents in the
interaction layer correspond to the same as in the relationship layer
and they all have two strategies to cooperate or to defect. It is
noted that the neighbors of agent may not be the same in distinct
layers, which is determined by parameter p, the possibility of rela-
tionship layer neighbors interacting in current games. For example,
player 5 and 7 are not associated with each other in the relationship
layer but they interact, hence build a link in the interaction layer
with probability (1 — p). As mentioned in Sec. II B, the neighbors’
behavior also influence the intensity of their relationships. In the
interaction layer, when both agents are cooperators (blue vertices),
edges denoted as “+” means an increase in their corresponding
relationship layers’ edge weight by e. Conversely, when edges are
marked as “—” for defectors (red vertices), it implies the intensity of
their relationship decreases by €. Edges marked as “0” indicate that
one agent cooperates while the other defects, hence their relation-
ship remains unaffected. As illustrated in Sec. 1T C, the behaviors
of agents in the interaction layer evolve according to the defined
strategy updating rule based on their extended fitness. In sum, the
multiplex network structure provides an appropriate representation
of the interplay between social structure and interactions, allow-
ing for a more comprehensive understanding of the microscopic
dynamics.

To reveal the possible role of the relationship layer on the sys-
tem behavior, we use a different network topology. In particular, we
apply honeycomb lattice (HL) with k = 3 degree, square lattice (SL)
having k = 4, and hexagonal lattice (XL) where k = 6. Besides, we
also use Watts-Strogatz small-world network (WS, k = 10, with
pr = 0.5 rewiring probability). For a proper comparison, the com-
plete network contains N = 2500 nodes in every cases. Initially, each
agent is assigned randomly as a cooperator or a defector with equal
probability. To reach the stationary state of the coevolutionary pro-
cess, we executed 5500 Monte Carlo (MC) steps and system-specific
quantities, such as the fraction of cooperators or the mean of rela-
tionship index, are measured in the subsequent 500 MC steps. In
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FIG. 1. Coevolutionary game on multiplex networks. The multiplex network con-
sists of two layers, termed as “relationship layer,” and “interaction layer.” Each
node within both layers corresponds to the same agent. In the relationship layer,
weighted edges denote intensity of the association between agents. Edges in the
alternative layer denote proper interactions among agents in the from of cooper-
ation or defection. According to the coevolutionary rule, a link in the relationship
layer will affect whether the game occurs in the interaction layer, and the outcomes
of this game also affect the sate of the link in the relationship layer.

this way, the total length of simulation was 6000 MC steps for each
parameter values. To ensure the accuracy of the experiments, our
results represent the average of 10 repetitions for each experiment.
The simulation procedures are implemented by using Python 3.9.

Ill. RESULTS

In this section, we present our observations about the coevolu-
tion of cooperation level and relationship index by illustrating how
cooperative behaviors vary with game parameters.

A. Evolution of cooperation in coupled multiplex
graphs

We first present how the cooperation level changes by varying
the main model parameters which are the b temptation to defect and
the m relative weight factor of relationship index in the extended
fitness function. To gain a generally valid observation about the
system behavior, we present results simultaneously obtained for dif-
ferent graphs of relationship layers. The results are summarized in
Fig. 2 where we set p = 0.9 for all cases. This p value practically
means that players interact with their neighbors mostly but there
is a small chance to play a game with other players, too, with whom
there is no permanent relationship. Across all four network types,
cooperation density decreases as either parameter, b or m increases.
Within the explored parameter range, both pure cooperation and
pure defection regions are observed. Generally, smaller values of b
and m lead to a higher prevalence of cooperation, while larger values
are associated with an increased presence of defection. Furthermore,
the transition from pure cooperation to pure defection exhibits a
left-skewed trend for all network types.

Staying at the lattice structures, it is noted that enhancing
the degree has been observed to favor cooperation generally. Both
the HL and the SL cases exhibit a sharp decline in cooperation
density, forming a distinct transition line on the parameter plane.
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FIG. 2. Cooperation heatmaps for four networks. The f¢ density of cooperators is shown on the b — m parameter plane at p = 0.9 for honeycomb lattice (a), square lattice
(b), hexagonal lattice (c) and WS small-world graph (d). The meaning of colors is explained in the right-hand side legend for each panel. It is generally valid that the cooperation
level decays as we simultaneously increase the temptation value and the relative strength of relationship index in the fitness function. The stationary value of fc was averaged
over 500 MC steps after 5500 relaxation steps in a graph containing N = 2500 nodes. (a) HL. (b) SL. (c) XL. (d) WS.

While the XL and the WS topologies provide more chance for the
coexistence of cooperation and defection, thereby suppressing the
occurrence of pure defection in the population. Within the parame-
ter range we investigated, defective strategy predominates in the HL
case. Conversely, as to WS, the space for pure defection is greatly
restricted, existing only when both b and m reach their maximum
values.

Next, as shown in Fig. 3(a), we investigate the variation of f;
with respect to b when m = 0.50 is fixed. The results here corrob-
orate the aforementioned observations, namely, a higher degree in
the three regular lattice networks (HL, SL, XL) provides more favor-
able conditions for the evolution of cooperation. Within the range
1 < b < 2, the cooperation density for the HL case consistently
remains below 0.60 and rapidly declines toward 0 as b is decreased.
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FIG. 3. Cooperation level in dependence on parameter b and p for four networks. Panel (a): f, as a function of b at fixed m = 0.50 and p = 0.90 values. Panel (b): f, as a
function of p at fixed b = 1.50 and m = 0.50 (b). Curves with different colors represent different topology of relationship layer as indicated in the legend: HL (honeycomb),

SL (square), XL (hexagonal lattice), and WS (small-world).

Square lattice topology offers a significantly different system behav-
ior where there is a steep decline in the cooperation density between
the range of b values from 1.30 to 1.60, continuously diminish-
ing from an initial value close to 1.00 and approaching 0 across
the remaining parameter range. Moreover, among the four network
types we investigated, it is noteworthy that under these parame-
ter conditions, the steepest decline of f; occurs within the SL case.
The f. function of XL topology, on the other hand, maintains a
steady decline after b exceeds 1.10 but consistently involves a sig-
nificant portion of cooperators. For the WS case, the cooperation
density remains maximal at around b = 1.0, with a gradual decrease
observed only after b surpasses 1.50, yet it remains consistently
above 0.75.

As expected, larger temptation involves lower cooperation
level, but the way how fc decays could be qualitatively diverse for
different topologies. The system behavior is the most sensitive on
b for square lattice and the temptation has just less importance for
those graphs where the average degree is high.

Our findings align with conventional models, indicate that
increasing the temptation to defect (b) consistently leads to a pro-
gressive decline in the population of cooperators. Notably, the dis-
tinctive features of our model highlight the importance of parameter
(m) which governs the relative significance of the relationship index
within extended fitness. In particular, we observe that elevating the
value of m consistently results in the decay of cooperation across all
network structures employed in our study. In essence, a higher sig-
nificance assigned to the relationship index in the fitness formula
negatively affects cooperation.

In our previous simulations, we maintain a fixed probabil-
ity (p = 0.90) for establishing connections within the interaction
layer according to the relationship layer. However, to investigate the
potential impact of p, which determines how strictly an agent inter-
acts with neighbors defined by the relationship layer, we conduct
simulations by systematically changing its value at fixed b = 1.50
and m = 0.50. As shown in Fig. 3(b), the variation in p results

in largely different system reaction at specific topologies. A rela-
tively insignificant impact on cooperation behavior can be detected
for honeycomb lattice and small-world graphs. Notably, under
these parameter conditions, cooperation level in the HL consis-
tently remains close to 0, regardless of the specific p. However, for
square and hexagonal lattices, the stationary cooperation densities
exhibit a nearly continuous growth as p increases. The most visi-
ble difference between lattice structures is that square lattice shows
the most sudden growth in cooperation density within the 0.7 < p
< 0.9 interval, while hexagonal lattice depicts the largest cooper-
ation growth for lower 0.5 < p < 0.6 values. Based on the com-
parison, we can conclude that square lattice case shows the most
pronounced improvement of cooperation over the entire 0.5 < p
< linterval.

B. Clustering driven by relationship layer of square
lattice

As we stressed, the utmost sensitivity in system behavior
becomes apparent when the relational layer assumes the structure
of a square lattice. This topology represents a kind of tipping point
where nodes have relatively small, but not too small degree. In this
way, the topology can reveal the impacts of model parameters deli-
cately which remain hidden when a general player has too few or too
many neighbors. The spatial strategy organization for this special
case is shown in Fig. 4 where we present the stationary distributions
for some typical model parameters.

We first consider the temptation to defection as b = 1.5 and
the relative fitness weight parameter as m = 0.5 on the upper row of
Fig. 4. As we increase the parameter p from 0.50 to 1 we can see that
the portion of cooperators grows from 0.053 (a) to 0.684 (c). But the
increment is not continuous because even at p = 0.75 the portion of
cooperators is only 0.272 (b). These panels illustrate nicely that the
clustering of cooperators due to network reciprocity can only work
for large p values. In particular, we cannot really detect compact blue
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FIG. 4. Clustering of cooperators when using square lattice topology in the relationship layer. On the upper row, we use b = 1.5 and m = 0.5 for all cases at different p
values, which are p = 0.5 (), 0.75 (b), and 1 (c). On the lower row we apply p = 0.9 and m = 0.5 at various temptation levels. They are b = 1.3 (d), 1.5 (e), and 1.7 (f).
Cooperators are marked by blue while defectors are denoted by white color in a lattice containing 2500 players. The upper low indicates that we need a large p value to
spatial reciprocity work. For moderate p values large cooperator islands cannot form. The lower row illustrates that the cooperation level remains reasonable even at b = 1.5
and the major decay of cooperation happens for larger b values. Below this parameter condition cooperators can maintain their tight formation but above this the change is
significant. This particular behavior, exclusively characterizes square lattice, separates other cases observed for alternative topologies where the temptation value has less

critical role on the cooperation level.

islands in panel (a) and in panel (b) because the modest p, or in other
words the relatively high 1 — p probability, allows player to estab-
lish temporary interactions with distant players. In this way network
reciprocity cannot work efficiently. For alternative topologies where
the average degree is higher, such as for XL and WS cases, this effect
is less significant because the crowded neighborhood suppress it.

On the lower row of Fig. 4, we systematically adjusted the
parameter b to values of 1.30 (d), 1.50 (e), and 1.70 (f) at fixed
p =0.9 and m = 0.5 values. As expected, by increasing b the por-
tion of cooperators decays from 0.771 (d) to 0.177 (f). However, this
decline takes a noteworthy turn above b = 1.50. It is important to
highlight that even at a relatively high value of b = 1.50 in panel (e),
a substantial cooperator density of 0.619 remains significant. This
phenomenon illustrates that for large p values network reciprocity,
supported by the extended fitness function, could be efficient no
matter the temptation to defect is relevant.

Numerous prior studies have underscored the pivotal role
of network structures in fostering cooperative clusters and subse-
quently shielding against invasions by defectors. This phenomenon
is driven by the necessity for each agent to adopt a cooperative
strategy when interacting with their neighbors, ensuring the suste-
nance of substantial mutual payoffs. As it is illustrated in the spatial
strategy distributions of Fig. 4, cooperator players cannot maintain
large clusters anymore at relatively low p and significantly high b
values, but become isolated, hence they have no chance to utilize
the positive consequence of network reciprocity. Additionally, when
an agent receives a meager payoff, notably smaller than that of its
defector neighbors, it leads to the rapid disintegration of the coop-
erative cluster, presenting a challenge in terms of reconstitution.
When we extended the fitness function by considering individual
relationship index, our original motivation was to explore whether
this additional term can improve the conditions for cooperation.
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Interestingly enough, to involve the local state of relationship has
the opposite effect because it covers the pure consequences asocial
behavior. While an actual D — D bonds gives nothing to payoff,
according to WPD parametrization, the W value of this bond could
be significant because it can cumulate a better C — D state from
the past. In this way the feedback of strategy choice cannot be as
straightforward as for the case when fitness is determined purely by
payoff values.

C. Coevolution of relationship index

In order to obtain a deeper understanding of the overall and
localized characteristics of player relationships, we computed the
average centrality values of all agents within each network under
varying parameter conditions. Furthermore, we analyzed the cen-
trality distributions for all agents across different parameter com-
binations, encompassing both their initial and final states. These
investigations allowed us to uncover insights into how different net-
work structures and parameter configurations affect the evolution of
cooperative behaviors among competing agents.

First, we measured the average relationship index of agents in
dependence of the fitness coupling parameter m for all networks.
Figure 5 summarizes our results where we chose three specific
b = 1.0, 1.5, and 2.0 values. They represent low, medium and high
temptation. As a robust feature, we can observe that the average rela-
tionship index decreases with an increase in parameter m. This is
valid independently of the temptation value. However, a higher b
value leads to a more pronounced and rapid decline in the mean of
relationship index. For the lattice topologies (HL, SL, and XL) the
average relationship index exhibits an initial decline followed by a
stabilization trend in the large m region. Notably, within this range,
the mean of relationship index on WS consistently demonstrates a
decreasing trend. In particular, for both HL and SL, regardless of the
chosen b, as m becomes sufficiently large, the average relationship
index eventually converges to a common value. Evidently, owing to
variations in the average degree of the four network types, the aver-
age relationship index for all agents increases as the average network
degree rises. Accordingly, agents on WS exhibit the highest average
relationship index, reaching approximately 7.5, while the maximum
for HL is around 2.2. Additionally, it is worth noting that the aver-
age relationship index in WS consistently remains higher than the
values for other three network types.

Beside the average of A, we also measured the distribution of
relationship index for all networks, shown in different panels of
Fig. 6(a). To evaluate the final stationary distributions correctly we
also plot the initial normal distributions. For a proper comparison
we used the same b = 1.5, p = 0.9 values for three representative
m =0, 0.5, and 1.0 values of coupling weight of fitness function.
The initial distribution of the relationship index across all networks
closely approximates a normal distribution, which is a straightfor-
ward consequence of the uniform starting distribution of W values.
When analyzing the interplay between f. and the relationship index
distributions, we observe a distinct trend for HL, SL, and XL cases.
When f; approaches or equals 1, the relationship index distribu-
tion exhibits a noticeable left-skew. In the other extreme case, when
f: approaches or equals 0, the relationship index distribution leans
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FIG. 5. The mean of relationship index (A) plot in dependence on m and b for
four networks. We demonstrate the influence of parameter m on the mean of the
relationship index for four distinct network structures at p = 0.9. Different colors
indicate different network type as indicated in the legend. They are honeycomb
(HL), square lattice (SL), hexagonal lattice (XL) and small-world graph (WS).
Solid, dashed—dotted, and dashed lines, respectively, correspond to b = 1.0, 1.5,
and 2.0 values.

toward the right-skew. In other words, when cooperation domi-
nates, most agents tend to have relatively higher relationship index
values, whereas in times of cooperation dwindling, the majority of
agents’ relationship index tend to converge toward 0. Under these
parameter conditions, both the distribution of relationship index
for HL and SL in the stationary state exhibit two distinct promi-
nent peaks. In contrast, the final relationship index distribution in
the HL appears relatively stable and lacks distinct peaks. In the con-
text of our research parameter space, it is noteworthy that there is no
pronounced skewness in the distribution of relationship index for
the WS graph. To check the robustness of our findings obtained for
random graph, beside WS network we also applied Newman-Watts
(NW) network. Their comparison how relationship index distribu-
tion evolves can be seen in Fig. 6. As panels (d) and (e) indicate,
there is a strong similarity for m = 0 and 0.5, while there is a slight
difference for the extreme case of m = 1. More importantly, for both
random graphs the initial and final relationship index distributions
practically approximate the normal distribution.

In order to quantify the distributions of relationship index for
different networks we summarize the kurtosis and skewness values
both for initial and final states obtained for m = 0,0.5, and 1. The
results are summarized in Table I. Notably, kurtosis measures the
sharpness or flatness of the distribution, while skewness indicates its
asymmetry. The initial distribution of relationship index in regular
lattices (HL, SL, and XL) exhibits negative kurtosis, while random
small-world networks (WS and NW) show positive initial kurto-
sis. Besides, the skewness values for all networks are close to 0 in
the initial distribution. More precisely, the distribution of HL ini-
tially exhibits negative kurtosis, suggesting a relatively flat shape.
However, at m = 0.5, the kurtosis increases to 0.601, indicating
a transition toward a more peaked distribution. Skewness under-
goes substantial changes, influenced by the change of m, particu-
larly notable between m = 0.0 and m = 0.5, indicating sensitivity
to change in cooperation. In agreement to the graphical observa-
tions, the distribution of relationship index in SL is most flattened
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FIG. 6. The probability density distribution of relationship index in the initial and steady states under various parameter settings. Different panels display the starting and final
distribution of relationship index for different graphs, as HL (a), SL (b), XL (c), WS (d), and NW (e). For all cases we used p = 0.9 and b = 1.5 parameters. Horizontal axis
shows the actual vales of individual relationship index, while vertical axis shows the probability density of A. In all panels the initial normal distribution is shown by dashed
red line, while the final distributions for different m values are shown by blue, orange, and green as indicated in the legends. (a) HL. (b) SL. (c) XL. (d) WS. (e) NW.
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TABLE I. Kurtosis and skewness of the relationship index distribution for five different networks. The initial distribution of relationship index of HL, SL, and XL exhibits negative
kurtosis and skewness values close to 0. The skewness experiences significant alterations by increasing m, which notably affects the f, value. In contrast, WS and NW networks
show positive initial kurtosis and skewness values close to 0. Despite variations in m, the skewness remains relatively constant, while a significant decrease in kurtosis is observed

when m reaches 1.0.

Kurtosis Skewness
Networks Initial m=0.0 m=0.5 m=1.0 Initial m=0.0 m=0.5 m=1.0
HL —0.336 —0.267 0.601 —0.505 —0.016 —0.589 0.863 0.541
SL —0.275 —0.423 —0.952 —0.521 0.063 —0.499 0.197 0.463
XL —0.156 —0.556 0.010 0.532 0.020 —0.387 —0.958 —0.109
WS 0.486 0.404 0.617 0.214 0.115 0.408 0.527 0.716
NwW 0.275 0.421 0.267 —0.027 0.067 0.478 0.513 0.392

when m is set to 0.5, as evidenced by a kurtosis value of —0.952.
Simultaneously, the skewness is close to zero (0.19), indicating a
transition to a more symmetrical distribution. As m increases, kur-
tosis of XL becomes positive, indicating a transition toward a more
peaked distribution. A noteworthy decrease in skewness at m = 0.5,
reducing to —0.958, signifies a pronounced shift toward a more
negatively skewed distribution. Remarkably, WS network shows a
peaked distribution with positive kurtosis across different m values,
and skewness remains relatively constant, suggesting minimal asym-
metry variation in response to changes in the cooperation level. For
NW networks, a subtle decrease in kurtosis is at n = 1.0 indicating a
shift toward a less peaked distribution, and skewness remains stable
and positive.

IV. CONCLUSION AND OUTLOOK

The main scope of our study was to reveal how strategy choice
and the intensity of relationship form each other when individual
interest of a player is in conflict with collective goal. Accordingly,
the strength of links between neighbors is time dependent, which is
affected by the actual strategy of involved partners. To underline the
importance of relationship we assumed that the fitness, which drives
the strategy imitation process, depends not only on the payoff values
determined by actual strategies, but also on the so-called individual
relationship index which is a time accumulated fruit of the history
with neighbors. The above described coupling can be well studied
in the framework of a coevolutionary multiplex system where we
distinguish a relationship and interaction layers.

In the relationship layer, there are declared connection between
neighbors, but the intensity of their relation is case specific. More
precisely, while this W weight is always between 0 and 1, its value is
increased with an &€ when neighbors both cooperate, but is decreased
by the same amount for mutual defection. The actual W value
expresses the player’s willingness to interact with the partner which
happens with probability p. Otherwise, a randomly selected play-
ers are chosen to play with probability 1-p. Owing to diversity
in network structures and the strength of interpersonal relation-
ships, every agent possesses an individualized relationship index and
in combination with the individual payoff they determine collec-
tively an agent’s fitness. Naturally, the latter value plays a decisive
role in the strategy imitation process. The basic conflict is charac-
terized by weak prisoner’s dilemma game and further key model

parameters are p, the link between relationship and interaction
layers, and m which expresses the relative importance of relation-
ship index in the extended fitness function. To gain a comprehensive
view about the potential system behavior, we have tested differ-
ent topologies including honeycomb, square, hexagonal lattices,
Watts-Strogatz and Newman-Watts small-world networks.

There are several generally valid observations. As anticipated,
the global cooperation level diminishes with increasing temptation,
although the decay of this function may exhibit substantial varia-
tions based on the network topology. There is a gradual decline for
honeycomb, hexagonal, and small-world network, while the change
is sudden for square lattice. The latter topology plays a borderline
between the small-degree and large-degree graphs that explains this
specific behavior. In a contra-intuitive way, the coupling of payoff
and relationship index in the extended fitness function resulted in
a lower cooperation level. This behavior can be valid for all graph
structures, but it is more spectacular when the average degree is
small in the graph. It simply means that by enforcing the fitness
with an index summarizing the cumulative history with neighbors
does not support, but hinders the evolution of cooperation. This sur-
prising phenomenon can be explained by the fact that a pure payoff
based fitness function provides a clean feedback between the strategy
change and actual environment. To consider the cumulative history
of partnership, however, mitigates this coupling which is enjoyed by
defector strategy better.

We also detected a clear connection between the cooperation
level and the distribution of relationship index. In honeycomb,
square, and hexagonal lattices, a dominance of cooperators results
in a left-skewed distribution, while a dominance of defectors leads
to a right-skewed distribution. Interestingly, this pattern is not fully
noticed in WS or NW networks where relatively large degree gen-
erally hinders the decay of cooperation, hence only the shift toward
larger relationship values is detected.

This study adopts multiplex networks to investigate the phe-
nomenon where agents in real-life often establish relationships
before engaging in game interactions. Meanwhile, there are still
some shortcomings in our model that can be improved. For exam-
ple, we used the simplest linear coupling in the fitness calculation
formula and alternative versions can also be justified. Further-
more, we only considered the change of weight of links in the
relationship layer without considering proper break and building
alternative connections. Other extensions that can also be explored
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to gain deeper insights into the spatial evolution of cooperation
under stochastic risks. For instance, agents who have stable relation-
ships may exhibit varying probabilities of engaging in strategic inter-
actions in the interaction layer, which can be effectively modeled by
using random variables.
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