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Time-varying connections are crucial in
understanding the structures and dynamics of
complex networks. In this paper, we propose
a continuous-time switching topology model
for temporal networks that are driven by bursty
behaviour and study the effects on network structure
and dynamic processes. Each edge can switch
between an active and a dormant state, leading to
intermittent activation patterns that are characterized
by a renewal process. We analyse the stationarity
of the network activation scale and emerging
degree distributions by means of the Markov
chain theory. We show that switching dynamics
can promote the collapse of network topologies
by reducing heterogeneities and forming isolated
components in the underlying network. Our results
indicate that switching topologies can significantly
influence random walks in different networks and
promote cooperation in donation games. Our research
thus provides a simple quantitative framework
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to study network dynamics with temporal and intermittent interactions across social and
technological networks.

1. Introduction
Network theory serves as a comprehensive framework for describing the interconnections
among various entities [1,2]. The discovery of ‘small-world’ [3] and ‘scale-free’ [4] networks has
catalysed significant interest in the formation and statistical properties of numerous real-world
complex networks [5–8], such as the Internet and collaboration networks. These seminal studies
have elucidated phenomena such as the six degrees of separation and the power-law degree
distribution observed in large-scale networks.

In the past two decades, research has primarily concentrated on network modelling to
investigate how various mechanisms affect network topologies, often based on real-world
system assumptions, such as fitness [9,10] or variable increments [11]. As the field of complex
networks has evolved, increasing attention has been directed towards time-varying relationships
among individuals [12–14], including human contact [15], communication [16,17] and protein
interactions [18]. The concept of temporal networks offers a novel perspective on understanding
the evolving structures of networks and their dynamic processes. In temporal networks,
both vertex and edge sets are assigned timestamps to represent the continually changing
interactions within a population. Using this temporal network framework, researchers have
achieved significant insights into dynamic processes, including epidemic propagation [19–21] and
evolutionary dynamics [22–24].

One method for investigating the effects of temporal links in complex networks involves
examining a switching topology [25,26]. Existing literature often models network structure
changes as governed by a switching signal [27,28], where switching events occur at
predetermined times specified by the signal, leading to corresponding alterations in the network
connections [29]. In this paper, we focus on a more generalized framework where the timing of
topology switches are determined by the intermittent bursty interactions among entities [30,31].

Interactions in many time-varying complex systems typically exhibit bursty behaviour,
characterized by individuals contacting their peers—such as sending emails or making phone
calls based on immediate needs. Conventional models often assume that these interactions
follow Poisson statistics [32,33], which results in an exponential distribution of interevent times
and implies that the number of events is a linear function of time. However, recent empirical
studies have demonstrated that interevent times in complex systems often adhere to non-Poisson
statistics, typically exhibiting heavy-tailed distributions [34–36]. This suggests that events do
not occur uniformly over time. Such non-Poisson intermittent activation patterns are observed
in various real-world systems, including email communication [37] and neuronal activity [38].
Mathematical modelling of bursty behaviour is crucial for understanding the properties and
dynamics of complex systems, including population models [39,40] and dynamics [41–43].

In this article, we investigate the switching topology induced by bursty behaviours across
a range of distributions, encompassing both Poisson and non-Poisson statistics. We model the
switching topology of temporal networks by considering that each edge can alternate between
activated and dormant states within the underlying static network. On the continuous time
axis, both the activation and dormancy periods of an edge are modelled as random variables
following two independent general distributions, resulting in a cyclic but not strictly periodic
renewal process. This framework allows the switching signal for an edge to transition between
activated and dormant states based on random timing, applicable to both Poisson and non-
Poisson bursty behaviours. We conduct a theoretical analysis of the impact of this switching
topology on network structure and explore its effects on collective behaviours by examining
random walks and Prisoner’s Dilemma (PD) within networks exhibiting stochastic switching
topologies.
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2. Results
We present an edge-switching dynamic model for complex networks, where each edge can exist in
one of two states: activated or dormant. The duration for which an edge remains in either state is
governed by random variables that follow two independent probability distributions, which may
be either Poisson or non-Poisson in nature. We employ continuous-time Markov chain theory
to analyse the effects of these dynamic state transitions on the network’s topological properties.
Building on our analysis of the network’s structural characteristics, we further investigate the
implications of the proposed switching topology on random walks and evolutionary dynamics
within the network.

(a) Switching topology model with bursty dynamics
We consider an undirected and unweighted static network G as the underlying network, with the
vertex set V (|V| =N), the edge set E (|E | =M) and the degree distribution (p(k), the probability
to find vertex with degree k in the whole network). The average degree of the focal underlying
network G is 〈k〉 =∑∞

0 kp(k). We assume that each edge is in one of the activated and dormant
states. The edge activation is a non-instantaneous event. Once an edge turns activated at a
moment, it turns dormant after a random time that follows the probability distribution f (t).
Similarly, once an edge turns dormant, it is activated again after another random time that follows
the distribution g(t). We define the activated subgraph at time t as GA(t)= (V , EA(t)), where EA(t) is
the activated edge set at time t. In the following analysis, we mainly focus on the property of the
activated subgraph because the edge set of the dormant subgraph is ED(t)= E − EA(t) and hence
has similar properties. In addition, a vertex is considered ‘trapped’ if all edges incident to it are
dormant at a given time. We present an example of this model in figure 1.

We are interested in the network property with the proposed switching topology mechanism.
We mainly focus on the network topology properties averaged over time (expected quantities).
Concretely, we pay attention to the expected topological property of the activated subgraph GA(t).
We first consider one single edge and denote the quantity xij(t) ∈ {0, 1} as the state of the edge (i, j)
at time t, where 0 and 1 indicate that this focal edge is dormant or activated, respectively. If i and
j are not connected in the G, we have xij(t)= 0 for an arbitrary time. Accordingly, the activated
edge number can be expressed by

∑
i,j∈G xij(t). The evolution of this quantity can be regarded as

a queueing system with a limited source. For the connected pair i and j, xij(t) is a renewal process
that takes values in {0, 1} by turns. If the process xij(t) has completely gone through two adjacent
activated and dormant states during time TC, then we say this process undergoes a cycle. The
expected time for a cycle is

E[TC]=
∫ ∞

0
t[f (t)+ g(t)] dt. (2.1)

We define the activation constant as q0 =
∫∞

0 tf (t)dt/E[TC], i.e. the probability of finding an
edge activated in a cycle. Since we assume the activated and dormant states of all edges are
independent, the probability of finding m activated edges in the underlying network G follows
the binomial form:

P

⎡
⎣∑

i,j∈G
xij(t)=m

⎤
⎦= M!

m!(M−m)!
qm

0 (1− q0)(M−m). (2.2)

Therefore, the density of GA(t) is E[ρ]= 2q0M/N(N − 1). We note that a vertex i can have no
activated edge and becomes isolated in GA(t), with the trapped probability P(

∑
j∈G xij(t)= 0)=

(1− q0)ki , where ki is the vertex i’s degree in the underlying network. We are also concerned about
the expected degree distribution of GA(t), i.e. the probability of finding a vertex with degree k in
the activated subgraph. With the proposed phase transition of edge states, the degree distribution
of the activated subgraph (GA(t)) of G is determined by p(k) and q0. Suppose that we find an
individual with the degree j in the network G as the focal vertex. With the state transitions of
the edges connected to its neighbours, its degree in GA(t) varies as an integer in the range [0, j].
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Figure 1. Illustration of stochastic edge-switching topology in complex network. The underlying network (left panel) is static
with six vertices and nine edges. Each edge switches between dormant and activated states independently in a continuous time
axis (middle panel). The time spent in activated and dormant states is governed by general distributions f (t) and g(t). At the
time t, the edge set of activated subgraphGA(t) does not contain the dormant edges (A, B) and (C, D).

Obviously, at a sufficient time t, this focal vertex has the degree i with the probability
(j

i

)
qi

0(1−
q0)(j−i). We have mentioned that the degree distribution of the network G is p(j), i.e. the probability
of finding a vertex with degree j. Consequently, the expected degree distribution of GA(t) can be
expressed as (see §4(a) for details)

pA(i)=
∑
j≥i

j!
i!(j− i)!

qi
0(1− q0)j−ip(j). (2.3)

To illustrate conclusions, we show the network topology properties in figure 2. We set
the dormant time following exponential distribution f (t)= λe−λt, λ > 0, and the activated time
following power-law distribution g(t)= (α − 1)t−α , α ≥ 2. Therefore, the activation constant q0 =
(λα − 2λ)/(λα + α − λ− 1). We start with a random regular graph (RRG) as the underlying
network G, in figure 2a, we find that the activated edge number (

∑
i,j∈G xij(t)) is stable after t= 10,

and oscillates around specific values. It is important to emphasize that this stationary state is
irrelevant to the initial state because of the Markov chain irreducibility of the activated edge
number. Figure 2b further presents the stationary distribution of edge numbers in the mentioned
stable state.

∑
i,j∈G xij(t) follows a homogeneous distribution and can be well approximated by the

binomial form as equation (2.2) suggests. The curve in the corresponding colour of each parameter
setting is the theoretical solution.

Next, we select Barabási-Albert scale-free network (BAN) [4] and Watts–Strogatz small-world
network (WSN) [3] as the underlying topologies. The degree distribution is a crucial property in
understanding network topologies. In figure 2c, we show the degree distribution of activated
subgraph in both BAN and WSN. The degree distribution is also stable with the network
evolution of switching topologies. Solid curves present the theoretical result of the degree
distribution in equation (2.3). An interesting phenomenon is that in BAN, the switching topology
causes the collapse of a heavy-tailed degree distribution. The minimum degree in BAN is k/2,
and we can find these vertices with the highest probability in the whole network. According to
equation (2.3), these vertices have smaller degrees than k/2 in the activated subgraph GA(t) that are
controlled by the binomial term. This homogeneous disturbance leads to the peak of the degree
distribution with switching topologies for BANs.

In figure 2d,e, we further present the results for the density and spectral radius of GA(t). As
indicated by our previous analysis, the monotonic relationship between λ and q0 is confirmed.
As λ increases, both the density and spectral radius also increase, with more pronounced
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Figure 2. Network topology properties. (a) Evolution of activated edge numberswith time. The underlying network is RRGwith
N= 100 and 〈k〉 = 4. We set λ ∈ {0.50, 1.00, 2.00} and α = 2.60 with randomly assigned initial condition. (b) Stationary
distribution of activated edge number. The network and switching topology settings are the same as (a). Each data point is
averaged in the stable state with t ∈ [0.5× 103, 103]. Theoretical results are shown in curves with corresponding colours. (c)
Degree distribution of activated subgraphGA(t). The underlying networks are BAN (upper panel) and WSN (lower panel) with
N= 103 and k ∈ {4, 8}. The switching parameters areλ= 1 andα= 2.6. We plot the numerical degree distributions in data
points in t ∈ [50, 100] with the interval 2. Curves are the theoretical degree distribution. (d) Density of GA(t). The underlying
networks are BAN (upper panel) and WSN (lower panel) with N= 2× 103 and k ∈ {4, 8, 12}. The switching parameters are
λ ∈ [0.5, 2.0] and α = 2.6. Each data point is an average of over 100 independent realizations in t ∈ [100, 300]. Theoretical
results are shown in curves. (e) The spectral radius of the average adjacencymatrix ofGA(t). Thenetwork and switching topology
settings are the same as (d). (f) The relative size of the largest component. The underlying networks are BAN (upper panel) and
WSN (lower panel) with N= 103 and k ∈ {2, 4, 8}. The switching parameters are the same as (d) and (e). Each data point is
the average of over 10 independent realizations in t ∈ [50, 150]. For (c–f), the reconnection probability of WSNs is unified as
0.25. (a)m versus time, (b) stationary distribution ofm, (c) degree distribution, (c) density, (d) spectral radius and (e)maximum
component.

growth observed for vertices with higher degrees k. The simulation results for density closely
approximate the theoretical expression 2q0M/N(N − 1) discussed earlier. The activated subgraph
GA(t) can be interpreted as the result of random failures or attacks on the edges of the
underlying network. In addition, the underlying networks considered here are sparse. Due to
the dynamic topology of the edges, bridge edges in the network can become inactive, leading to
the disconnection of network components. We quantify the impact of this dynamic topology on
network connectivity by measuring the relative size of the largest component in GA(t), defined as
the number of vertices in the largest component relative to N. In figure 2f, we observe that the
size of the largest component is nearly identical to that of the underlying network when k= 8.
However, when the degree is halved to k= 4, the relative size of the largest component gradually
decreases as activation weakens, though it still encompasses the majority of vertices. For k= 2,
network connectivity breaks down. In the case of a BAN, the relative size of the largest component
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Figure 3. The impact of edge switching on the maximum component ratio in real networks. We set α ∈ {2.60, 3.70, 4.60}
and λ ∈ [0.5, 2.0] in six real-world network datasets for cross simulations. Each data point is the average of the ratios of the
largest component over t ∈ [80, 200]. (a) The yeast protein network with [44]. (b) The inferred network by high-throughput
protein–protein interactions [45]. (c) The inferred network by small/medium-scale protein–protein interactions [45]. (d) The
bipartite network contains persons who appeared in at least one crime case [46]. (e) The network of fibre tracts in brains
[47]. (f) The retweet and mentions network from the UN conference held in Copenhagen [48]. (a) Yeast, (b) WormNet-CE-HT,
(c) WormNet-CE-LC, (d) Moreno Crime, (e) Brain and (f) Retweet.

does not exceed 0.60, and in most cases, it is less than half. For a WSN, the relative size is less than
0.08, leading to a significant number of isolated components or vertices.

In addition to generated networks, we also examine the effects of edge switching on the
relative sizes of the largest component in real-world network datasets. In figure 3, we present
the maximum component ratios for six real networks with different structures. The results
indicate that the largest component ratio exhibits a positive correlation with λ, but a negative
correlation with α. As α increases, the expected activation time approaches 1, whereas there are
no such constraints on the expected dormant time as λ increases. Notably, the curves for α = 3.70
and α= 4.80 are remarkably similar, suggesting that the largest component ratios are almost
exclusively dependent on λ. Each network becomes fragmented when the edges exhibit a low
activation tendency (i.e. when q0 is small), resulting in a significant loss of robustness.

In tables 1 and 2, we further summarize the exact largest component ratio for synthetic and real
networks, respectively, with α = 2.60. As the mean degree increases, the largest component nearly
occupies the whole network. For a network with a small mean degree (〈k〉< 4), the components
can be mostly separated, and the largest component ratio is small as well even if the activation is
strong (e.g. λ= 1.5). In real networks that we sample, the mean degrees are often small especially
for biological networks. Therefore, the largest component ratio grows slowly as the increase of λ.
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Table 1. The largest component ratio in synthetic networks givenα= 2.60.

networks BAN WSN

〈k〉 2 4 8 2 4 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ= 0.5 0.22 0.85 0.98 0.02 0.88 0.99
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ= 1.5 0.32 0.97 0.99 0.05 0.99 0.99
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ= 2 0.52 0.98 0.99 0.06 0.99 0.99
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2. The largest component ratio in real network datasets givenα= 2.60.

networks yeast WormNet-CE-HT WormNet-CE-LC Moreno crime brain retweet

〈k〉 2.67 2.28 2.37 3.56 3.03 2.70
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ= 0.5 0.53 0.38 0.37 0.76 0.65 0.55
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ= 1.5 0.79 0.67 0.54 0.92 0.82 0.79
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ= 2 0.85 0.72 0.60 0.95 0.86 0.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Based on the results above, we find that the switching topology can lead to the collapse of
the network structure. Next, we study the influence of the switching topology on two dynamic
processes (random walks and evolutionary dynamics).

(b) Deceleration of randomwalks
A random walk describes the simple information dynamics in a complex network [49,50]. In the
context of switching topology, we assume that a walker R(t) ∈ V , t≥ 0 starts from a random vertex
and moves to the next position according to a Poisson process with rate parameter 1. The walker
continuously steps to one of its neighbouring vertices through activated edges. If no activated
edge is available, the walker remains at its current position. The walker can move from vertex
i to vertex j only if xij(t)= 1. An example illustrating when the walker can or cannot move to
neighbouring vertices is shown in figure 4a. In the left panel, we observe that xAB(t)= xAD(t)= 1,
meaning the walker at vertex A can randomly step to either neighbouring vertex B or D via the
activated edges. By contrast, the right panel shows a situation where no neighbouring edges are
activated, causing the walker to remain at vertex A during that round.

We can discretize this random walk process into a discrete-time Markov chain that records
only the walker’s transitions. Let lij denote the probability that the walker R(t) was at vertex i
in the previous transition and will next move to vertex j. Since the probability of an edge being
activated is q0, we can express the transition probability as (see §4(b) for details)

lij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− (1− q0)ki

ki
, (i, j) ∈ E

(1− q0)ki , i= j

0, other

, (2.4)

where ki is vertex i’s degree in the underlying network G. In fact, lij indicates the probability for a
one-step random walk from vertex i to j. Since the random walk R(t) is an irreducible stochastic
process for a strongly connected underlying network, i.e. each state is a recurrent state. After
sufficient time t, we have the probability of finding the walker in vertex i (see §4(b) for details)

P(R(t)= i)= ki

[1− (1− q0)ki ]
∑

j∈G(kj/1− (1− q0)kj )
. (2.5)
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Figure 4. Edge cover ratio for random walks. (a) An example of random walks with network switching topology. Our focal
randomwalk steps by Poisson process and is now in vertexA. In the left panel, edges (A, B) and (A, D) are activated, and the focal
walker can step into B or Dwith equal probability. In the right panel, all edges around A are dormant, and the walker remains in
A. Panels (b–d) present the edge cover ratio against time in RRG, WSN and BAN, respectively, with N= 200,λ ∈ {0.50, 2.00},
α = 2.60 and k ∈ {2, 4, 8}. Each data point is obtained by the average of 100 independent realizations. (a) Random walk
example, (b) RRG, (c) WSN and (d) BAN.

For isothermal underlying networks, this stationary distribution degenerates to P(R(t)= i)= 1/N.
Therefore, the random walk in an isothermal graph with the switching topology has the same
probability of dwelling in each vertex.

We assume that when a walker steps from vertex i to vertex j, the corresponding edge (i, j)
is considered covered by the random walk. If the underlying network is strongly connected, the
walker will eventually traverse all edges given sufficient time. Our focus is on the edge cover
rate of a random walk in GA(t), specifically how the number of covered edges evolves over time.
To investigate this, we select three underlying networks: RRG, WSN and BAN, and numerically
study the edge cover rate under different network configurations.

From the results in figure 4b–d, we observe that when k= 2, the edge cover rates of RRG
and WSN are significantly slower than that of BAN. For a vertex with degree 2, the probability
of becoming isolated is (1− q0)2. If a random walker encounters such an isolated vertex, the
likelihood of the walker being trapped is relatively high. As mentioned earlier, a snapshot of
the activated subgraph GA(t) can be viewed as representing random failures or attacks on edges
in the underlying network. BAN, with its hub vertices, is robust against such random failures
and thus demonstrates resilience to temporary structural deficiencies caused by the stochastic
switching of the topology.

We have previously discussed the impact of switching topology on connected components.
A random walker is also susceptible to being trapped in an isolated component, which affects
the overall edge cover rate. As shown in figure 4b–d, with a higher λ (i.e. a higher q0), the edge
cover rate of the random walk increases in networks with lower degrees. This enhancement is
particularly pronounced in BAN. However, as the degree of the underlying network increases, the
influence of λ diminishes. When comparing the edge cover rates for k= 2 and k= 4, we observe
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Figure 5. Vertex cover rates of random walks in real networks. We set λ ∈ {0.50, 2.00, 3.50} and α = 2.60 for cross
simulations.We observe the randomwalks during t ∈ [0, 2000]. Each data point is obtained by the average of 100 independent
runs with randomly selected initial vertex. The settings of real networks are the same as figure 3. (a) Yeast, (b)WormNet-CE-HT,
(c) WormNet-CE-LC, (d) Moreno Crime, (e) Brain and (f) Retweet.

a substantial increase for k= 4, but a decrease in cover speed when k= 8. This phenomenon can
be explained by the probability of a single vertex becoming trapped. For instance, at λ= 0.50,
the trapped probability is approximately (1− q0)2 ≈ 0.184 for k= 2, but it drops significantly to
(1− q0)4 ≈ 0.034 for k= 4 and (1− q0)8 ≈ 0.001 for k= 8. In the latter two cases, the probability of a
random walker being trapped at a single vertex or within a connected component is similarly low.
However, the number of edges that the walker must traverse is twice as large for k= 8 compared
with k= 4. As a result, the edge cover rate for k= 8 grows more slowly than for k= 4.

In figure 5, we further analyse the vertex cover ratio in the real-world networks previously
discussed in figure 3. Our findings indicate that λ= 0.50 results in the slowest vertex cover rate
across all networks compared with the other two cases. At this setting, q0 = 0.125, which leads to
a high likelihood of vertices, particularly those with small degrees, becoming isolated. As a result,
the walker is more likely to be trapped at these vertices or within their associated components.
However, the results for λ= 2.00 and λ= 3.50 exhibit less clear trends across the networks. For
instance, in figure 5a, λ= 3.50 generally yields a slightly higher vertex cover ratio, while in other
cases, such as figure 5b,c, λ= 2.00 tends to result in a higher cover rate.

(c) Promotion of cooperation
Evolutionary dynamics is a powerful framework for studying cooperation [51–53] and
behavioural economics [54] in populations. Since Darwin, researchers have sought to uncover the
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mechanisms behind evolution. In the PD game, spatial structure allows a population to overcome
the Nash equilibrium of defection, a phenomenon known as network reciprocity. Recently, the
evolution of cooperation in time-varying networks has garnered significant attention [22,55].

In this study, we employ the PD model to explore the effects of switching topology on
evolutionary dynamics. In this model, two types of individuals—cooperators (C) and defectors
(D)—compete within the population. Each individual occupies a vertex, and edges in the
underlying network represent potential interactions between individuals. Mutual cooperation
yields a reward of b− c for both cooperators, while mutual defection results in a punishment of 0
for both defectors. In the case of one-way cooperation, the cooperator receives the sucker’s pay-off
of−c, while the defector gains the temptation pay-off of b. The ratio b/c is referred to as the benefit-
to-cost ratio. The pay-off for individual i (πi) is the sum of rewards from all activated connections
with neighbours. The fecundity of an individual is modelled by an exponential function of the
pay-off, Fi = exp(wπi), where 0 < w� 1 represents the strength of weak selection (see §4(c) for
details).

Under the switching topology, each participant’s pay-off is determined by interactions with
neighbours through activated edges. Given the continuous-time framework, the replacement
process follows a death–birth mechanism: individuals are selected to die according to
independent Poisson processes, after which their neighbours compete for the vacant position
with probabilities proportional to their fecundity through activated connections. If no activated
edge exists around the focal individual, the individual retains its current strategy. An example of
this strategy replacement process is illustrated in figure 6a.

The fixation probability of cooperation, ρC, (respectively, defection, ρD) is defined as the
probability that a single cooperator (respectively, defector) invades the network and eventually
dominates the population. Cooperation is favoured when ρC > ρD. To provide a comparison with
the condition for cooperation in static networks, we use RRGs and several real-world networks
to minimize the uncertainties associated with random network structures. In a static network, the
condition for cooperation is given by (N − 2)/(N/k− 2), where N is the population size and k is
the degree of the network.

Our results in figure 6b–d indicate that the switching topology lowers the threshold for
ρC − ρD > 0, thereby promoting the evolution of cooperation. This promotion is particularly
pronounced for smaller values of λ and in networks with larger degrees. It is important to
note that the monotonic relationship between λ and q0 implies that reducing edge activation
enhances the diffusion of cooperative behaviour. In networks without switching topology, the
condition for cooperation typically correlates positively with network degree, which can impose
strict constraints on the evolution of cooperation in regular networks. The proposed switching
topology, however, facilitates the emergence of cooperation at a relatively lower cost, especially in
scenarios with weak activation and high network degrees. The promotion of cooperation cannot
be quantified using the mean degree of the network with switching topology. There is a subtle
relationship between the cooperation condition and the network topology.

3. Conclusion and discussions
We propose a continuous-time switching topology model in complex networks driven by bursty
behaviours, characterized by a general interevent time distribution, to describe the evolution
of temporal links. This switching topology mechanism captures the intermittent interactions
commonly observed in social networks. Our primary focus is on the stationary properties of
the network structure under this switching mechanism, including the number of activated
edges (

∑
i,j∈G xij(t)) and the degree distribution of the activated subgraph GA(t). The intermittent

transition of edges between activated and dormant states can significantly destabilize network
topologies. Based on our simulation results, we conclude that a reduction in activation decreases
the number of activated edges, density, connectivity, and spectral radius of the network. Our
model allows a flexible combination of activation and dormant time distributions. If other
interevent time distributions are considered, the outcomes should closely follow our theorems
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Figure 6. Fixation probability of evolutionary dynamics. (a) An example of the evolutionary donation game with the network
switching topology. The fecundity calculation and replacement event from neighbours occur only by activated edges around
the focal updating vertex. In this example, our focal cooperator in the centre has three activated neighbours and obtains
b− 3c as the pay-off. Through the death–birth process, it turns into a defector. (b–d) ρC − ρD against temptation b in
RRGs. The settings are c= 1,N= 100, k ∈ {4, 6, 8}, andλ ∈ {0.5, 1.0, 1.5, 2.0}. The vertical dashed lines denote the baselines
(N − 2)/(N/k − 2) for ρC > ρD without the switching topology. The purple dashed line denotes the neutral drift, where
ρC = ρD.ρC andρD are obtained by computing the ratio of fixation times in 5× 104 independent experiments, respectively,
(b) k= 4, (c) k= 6, (d) k= 8. (a) Fecundity calculation and replacement. (b) RRG, k= 4, (c) RRG, k= 6, (d) RRG, k= 8.

regarding the variation of q0. Accordingly, in our future work, we aim to predict the topology
of social and communication networks exhibiting power-law patterns [56], as well as brain
dynamics, which often present a mixed case [57,58].

We examine the impact of the switching topology on two dynamic processes: random walks
and evolutionary game dynamics. Our connectivity results reveal that the switching topology
can result in isolated components or vertices, which substantially slows down the edge coverage
during random walks. When the activation constant or degree is small (i.e. edge activity is weak),
random walkers are likely to be trapped within isolated components or vertices, thereby delaying
the coverage and spread of information. This phenomenon can lead to a temporary ‘information
cocoon’ [59–61] among the networked population, persisting until connections or bridges to other
components are reactivated. Further investigation is needed to fully understand the conditions
necessary to avoid such information cocoons caused by intermittent switching topologies.

We also explore the effect of the switching topology on the evolution of cooperation using
donation game theory. Our findings suggest that the switching topology lowers the threshold for
ρC > ρD, thereby promoting the evolution of cooperation in networked populations. This effect
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is particularly pronounced in networks with higher degrees and weaker activation, compared
with static networks without switching topologies. From a theoretical perspective, considering
incomplete information [62] in the evolutionary process complicates the analysis, as the number
of accessible neighbours varies over time according to the renewal process of each vertex. [55]
successfully proposed a framework for calculating the conditions for cooperation in dynamic
networks by computing the transition matrix of all potential network states. In an underlying
network G with M edges, there are 2M possible activated subgraphs, leading to a 2M × 2M

transition matrix. This results in an exponentially increasing time complexity. Further research
is required to precisely quantify the effect of switching topologies on evolutionary dynamics and
cooperation.

Our model can be extended by considering other assumptions to approximate the real cases.
For example, the activation of one edge may influence another. Therefore, we can further study
the effects of dependent activation and dormant time distributions on both the network topology
and dynamics. The effect of vertex-switching on network topology can also be further explored
and compared to the edge-switching. Multi-layer networks and higher-order networks can also be
taken into account. More theorems on dynamic processes, e.g. specific condition for evolutionary
cooperation, epidemic propagation and synchronization, are also interesting questions regarding
the bursty switching topology.

4. Methods

(a) Stationarity of switching topology
For one single edge, its state undergoes a cyclic but not periodic process between two states,
i.e. activated and dormant. Obviously, this stochastic process is a recurrent Markov chain
with two states and thus becomes renewal and regenerative, because it can be regarded as a
restarting process once it turns into the initial state again. For the mentioned concept, a figurative
example is that light can be turned on and off as a cyclic process. For simplicity, we define this
stochastic process undergoes a cycle once an edge state first returns to the initial state from the
initial state. The limit probability of an edge state can be described by the expected duration
proportion in one single cycle. We can find one edge in the activated state with the probability∫

tf (t)dt/
∫

t(f (t)+ g(t))dt (defined as the activation constant q0) and in the dormant state with
the probability

∫
tg(t)dt/

∫
t(f (t)+ g(t))dt after a sufficient time t, which are the expected time

proportion for an edge to be activated and dormant in a cycle, respectively. Accordingly, the limit
probability that we find m activated edges in the focal network is the binomial form given in
equation (2.2), due to our independent activation assumption. This conclusion leads to other
corollaries of the activated subgraph GA(t). For GA(t), the expected activated edge number is
E[|EA|]= q0M, the expected density is E[ρ]= 2q0M/N(N − 1), and the expected mean degree is
E[〈k〉]= 2q0M/N.

We can obtain the probability to find the focal vertex with degree i in GA(t) and with degree j
in G as

pA(i|j)= j!
i!(j− i)!

qi
0(1− q0)j−ip(j). (4.1)

Note that finding i neighbours of the focal vertex in GA(t) if and only if its degree in G is greater
than or equal to i. Summing all the terms (pA(i|j)) with the condition j≥ i leads to the expected
degree distribution of GA(t) as equation (2.3).

(b) Randomwalk probability
The stochastic process {R(t) ∈ V , t≥ 0} is a continuous, traversal, irreducible Markov chain.
Directly solving the stationarity of random walk is difficult. We transfer this continuous-time
process to a discrete-time Markov chain considering each Poisson event in the random walk as
a one-step transition, inducing a new process {R′(t′) ∈ V , t′ ∈ {0, 1, 2, . . .}}. If the walker is at the
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vertex i, it steps into a neighbour via the activated edge randomly. Consider the probability that
the walker steps from i to j with the condition that the edge (i, j) is activated (with probability q0 as
mentioned previously). At time t, the probability of finding d activated edges around the vertex i
(1≤ d≤ ki) is

P

⎡
⎣∑

h∈G
xih(t)= d|xij = 1

⎤
⎦= q0

(ki − 1)!
(d− 1)!(ki − d)

qd−1
0 (1− q0)ki−d. (4.2)

The probability that the random walker steps into j is 1/d. If the edge (i, j) is not activated or does
not exist, the probability of a random walk from i to j is 0. Therefore, the probability for a random
walk from i to j is

lij =
ki∑

d=1

1
d

P

⎡
⎣∑

h∈G
xih(t)= d|xij = 1

⎤
⎦

=
ki∑

d=1

1
ki

ki!
d!(ki − d)!

qd
0(1− q0)ki−d

= 1− (1− q0)ki

ki
. (4.3)

We have mentioned that a vertex can be isolated in activated subgraph GA(t). Owing to the nature
of probability, we define that the walker steps into itself when a Poisson event for the random
walk occurs if the focal vertex has no activated edge out, with the probability (1− q0)ki . This
directly leads to the conclusion in equation (2.4).

Evidently, the process R′(t′) has a unique stationary distribution P[R′(t′)= i] because this
Markov chain is irreducible and periodic, which is equivalent to the stationary distribution of
R(t). Since the random walk process is time reversible, we have

P[R′(t′)= i]
1− (1− q0)ki

ki
= P[R′(t′)= j]

1− (1− q0)kj

kj
= c, (4.4)

where c is an auxiliary constant. Using
∑

j∈G P(R′(t′)= j)= 1, we have c= 1/(
∑

j∈G (kj/

1− (1− q0)kj )). Therefore, the stationary distribution of R′(t′) is

P[R′(t′)= i]= ki

[1− (1− q0)ki ]
∑

j∈G
kj

1−(1−q0)kj

, (4.5)

which directly results in equation (2.5) for R(t). For isothermal graphs where each vertex has
the same degree, since there are N vertices, this distribution degenerates into P[R(t)= 1/N] as a
uniform distribution.

(c) Game, pay-off and replacement
We employ the donation game with b > c > 0, i.e. PD, to study the evolution of cooperation in
networks with the stochastic switching topology. The pay-off matrix of the PD is

C D

C
D

[
b− c −c

b 0

]
.

(4.6)

Consider a local game with two players, a cooperator receives b− c or −c when interacting with
a cooperator or defector, respectively. A defector obtains the temptation b against a cooperator.
Interactions between two defectors yield no pay-off to each other. We denote the strategy of
the population as a vector S(t)= (s0(t), s1(t), . . . , sN(t)), si(t) ∈ {0, 1}, where si(t)= 0 (resp. si(t)= 1)
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indicates the individual i’s strategy is defection (resp. cooperation). Therefore, i’s pay-off at time t
is the sum of the game pay-off from all activated neighbours

πi(t)=
∑
j∈G

xij(t)[(b− c)si(t)sj(t)+ (−c)si(t)(1− sj(t))

+ b(1− si(t))sj(t)]=
∑
j∈G

xij(t)[−csi(t)+ bsj(t)]. (4.7)

This pay-off is transformed into fecundity by the exponential function Fi(t)= exp(wπi(t)). Under
weak selection, using Taylor’s formula, we obtain

Fi(t)= 1+ wπi(t)+O(w2). (4.8)

The replacement occurs by the Poisson process with the rate of 1 following the death–birth
updating. If there exist activated edges around i, i’s neighbours spread their strategy through
the activated links to i with the probability proportional to fecundity. If all edges are dormant
around i, it keeps its original strategy and no replacement from neighbours occurs. Therefore, a
neighbour j spreads its strategy to i with the probability

P[si(t)← sj(t)]= [1− (1− q0)ki ]
xij(t)Fj(t)∑

h∈G xih(t)Fh(t)
. (4.9)

Individual i keeps its original strategy with the trapped probability

P[si(t)← si(t)]= (1− q0)ki . (4.10)
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