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An Evolutionary Game With the Game Transitions
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Abstract—The psychology of the individual is continuously
changing in nature, which has a significant influence on the evo-
lutionary dynamics of populations. To study the influence of the
continuously changing psychology of individuals on the behavior
of populations, in this article, we consider the game transitions
of individuals in evolutionary processes to capture the chang-
ing psychology of individuals in reality, where the game that
individuals will play shifts as time progresses and is related to
the transition rates between different games. Besides, the indi-
vidual’s reputation is taken into account and utilized to choose
a suitable neighbor for the strategy updating of the individual.
Within this model, we investigate the statistical number of indi-
viduals staying in different game states and the expected number
fits well with our theoretical results. Furthermore, we explore the
impact of transition rates between different game states, payoff
parameters, the reputation mechanism, and different time scales
of strategy updates on cooperative behavior, and our findings
demonstrate that both the transition rates and reputation mecha-
nism have a remarkable influence on the evolution of cooperation.
Additionally, we examine the relationship between network size
and cooperation frequency, providing valuable insights into the
robustness of the model.

Index Terms—Game transitions, Markov process, network
evolutionary game, reputation.

I. INTRODUCTION

OOPERATION is often understood as the prosocial

behavior of bearing a cost to provide a benefit to another
individual [1], which implies that selfish and unrelated indi-
viduals should improve the payoff of others at their own
cost [2]. However, according to Darwin’s theory of evolu-
tion [3], defection should be the result of natural selection in
a social dilemma, but there exist many cooperative behaviors
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in human society and nature. For example, the worker bees
of honey bees will sacrifice their lives to protect the colony.
Vampire bats will allow their companions to suck their own
blood to help preserve the lives of their companions when
necessary. Therefore, understanding the emergence and main-
tenance of cooperation in a competitive world is significant
in explaining some of the prosocial behavior in nature, which
has attracted the attention of researchers from a wide range of
fields [4].

With the emergence of classical networks, such as the
small-world network proposed by Watts and Strogatz in
1998 [5] and the scale-free network proposed by Barabdsi and
Albert in 1999 [6], various novel network models have been
proposed [7]. For instance, a novel evolving network model
has been established considering the growing and decreasing
process based on the queueing system [8]. Li et al. [9] intro-
duced an evolving population network through the migration
of people and studied the spread of disease on networks. Three
novel models based on the homogeneous Poisson, nonhomoge-
nous Poisson, and birth death process were proposed to reveal
the influence of the vertex generating mechanism of complex
networks [10]. The novel complex networks can be a theo-
retical tool for our study of the social behavior of structured
populations.

At the same time, numerous game models have been
proposed to describe different types of social dilemmas in
order to characterize the game process between individuals in
a population, among which the famous are the snowdrift game
(SDG) [11], [12], prisoner’s dilemma game (PDG) [13], [14],
and stag-hunt game (SHG) [15], [16]. We can apply game the-
ory to understand social behavior from a new perspective. The
network evolutionary game theory, which combines game the-
ory with complex networks, has become one of the most useful
frameworks for studying the emergence of cooperation in pop-
ulations. Moreover, a large number of mechanisms that can
facilitate the evolution of cooperative behavior have also been
investigated, among which the five rules proposed by Nowak
in 2006 [17] are well-known. In addition, other mechanisms,
such as the behavior of conformity [18], [19], memory mech-
anisms [20], [21], rewards, punishments [22], [23], etc, have
also been shown to play a significant role in the maintenance
of cooperation.

However, it is worth noting that in most previous studies,
it has been assumed that the games played by individuals are
deterministic, which can be interpreted as the game is constant
all the time. In fact, determinism is only a special case, while
stochasticity is a common phenomenon in life. For example,
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the payoffs between enterprises do not remain the same all the
time although they adopt the same strategy but instead change
dynamically over time. In other words, the game between indi-
viduals should not just stay in one state as time progresses, but
it should also evolve over time. In the past few years, some
researchers have studied this issue. For example, Su et al. [24]
introduced game transitions into classical models of evolution-
ary dynamics and found that game transitions can significantly
reduce the critical benefit-to-cost threshold for cooperation to
evolve in social dilemmas. Hilbe et al. [25] utilized the theory
of stochastic games and evolutionary game theory to analyze
the proposed idea and obtained that the dependence of the pub-
lic resource on previous interactions can significantly increase
the propensity to cooperate. Moreover, as is well-known, rep-
utation is an efficient and ubiquitous social control mechanism
in natural societies, which is also crucial in the interaction of
individuals. In general, individuals who are willing to help oth-
ers will have a higher reputation, and they will also be more
likely to receive help from others. Some researchers [26] have
taken reputation into account in dynamic network modeling,
where individuals decide whether to break an edge based
on reputation and found that the evolutionary game on this
can effectively lead to the formation of cooperator clusters.
Hu et al. [27] performed Monte Carlo simulations on social
networks to determine critical values of the degree of ratio-
nality and the reputation threshold that warrants high levels of
trust and social wealth. Luo et al. [28] simulated the evolu-
tion of the environmental governance cooperative behavior of
enterprises considering the supervision behavior of the govern-
ment and the reputation evaluation behavior of environmental
social organizations.

In this article, we consider that the game state of each
individual is not fixed, but will change over time. We note
that unlike the previous one on game transitions, in our novel
model, they are not caused by changes in the environment, but
each individual will change from one game state to another at
a rate that follows an exponential distribution, thus character-
izing the changing psychology of the individual. We utilize
the exponential distribution since there are extensive stud-
ies [29], [30] showing that there are human behaviors that
obey exponential distributions. For example, Liang et al. [31]
built models for 20 million trajectories with fine granularity
collected from more than ten thousand taxis in Beijing and
found that the taxis’ traveling displacements in urban areas
tend to follow an exponential distribution instead of a power-
law. In other words, the game state of an individual can be
thought of as a Markov chain in continuous time, and its state
space is {Go, G1, ..., G,}, where G; (i =0, 1, ..., n) denotes
a particular game model. Hereby, we emphasize two confus-
ing concepts: 1) evolutionary game and 2) game evolution.
In this article, the evolutionary game focuses on the updating
of individuals’ strategies, while game evolution focuses on the
updating of individuals’ game states, which illustrates that they
are different concepts. In addition, we also take the reputation
of the individual into account when individuals update their
strategies. Specifically, each individual j has a reputation value
Rej, which is updated according to the individual’s previous
strategy: if the individual cooperates in the last round, Re;

will increase in a step of §, and vice versa, while Re; also
has an upper or lower limit, i.e., reputation cannot go up or
down indefinitely. Moreover, in order to fit better with reality,
individuals prefer to interact with individuals with high rep-
utations, i.e., they are more likely to choose individuals with
high reputations for payoff comparison and strategy learn-
ing. Generally, the main contributions of this article can be
summarized as follows.

1) We employ the game transitions of individuals based on
the Markov process to describe the changing psychology
of individuals in reality, where the game that individu-
als will play shifts as time passes and is related to the
corresponding transition rates between different games.

2) We introduce the reputation mechanism to allow indi-
viduals to choose highly reputable neighbors with a
high probability for strategy learning, and it evolves
dynamically according to the individual’s strategy.

3) The statistical number of individuals staying in different
game states is studied and the relative error between the
simulation results and theoretical results is calculated, it
is found to be small, which indicates the correctness of
the theory we proposed.

4) The impacts of transition rates between different game
states and payoff parameters with and without repu-
tation mechanism on the evolution of cooperation are
investigated, and the results demonstrate that both tran-
sition rates and reputation mechanism facilitate the
maintenance of cooperation.

5) The robustness of the model is verified by investigating
the impact of different network sizes on the cooperation
ratio, and the influence of different processes of strat-
egy updating time on the cooperative behavior is also
studied.

The remainder of this article is structured as follows:
first, we present the evolutionary dynamics with game tran-
sitions of individuals and provide related theoretical analysis
in Section II. Then, we carry out simulations to illustrate the
validity of our model and explore the evolution of cooper-
ation under different conditions in Section III. Finally, we
summarize our results, and further give outlooks in Section IV.

II. EVOLUTIONARY GAME ON COMPLEX NETWORKS
BASED ON MARKOV METHOD

In this section, we propose a novel evolutionary game model
on complex networks regarding the game transitions as well
as the reputations of individuals. Concretely, considering that
individuals in reality do not always play one game without
change, but have a time-varying mechanism, which can be
understood as the individual’s psychology changing all the
time. In order to characterize this behavior, we introduce the
Markov approach to represent the game transitions of indi-
viduals, which can be interpreted as each individual changing
from one game to another with a certain probability. In reality,
individuals in a population have various contact relationships
with each other, and such relations can be described by com-
plex networks, where a vertex in the network represents an
individual and an edge indicates the interaction between two
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Fig. 1. Game state transitions of individuals. Each individual in the network
will have the game state transition, the arrows signify the transitions from
one game state to another, where the letters A; and p;4| above or below the
arrows denote the rate of transition from game state G; to G;4| and the rate
of transition from game state G; 1 to G; (i =0, 1,...,n — 1), respectively.

individuals [32], [33]. Besides, the reputation mechanism of
individuals is also considered, in which individuals are more
inclined to choose individuals with high reputations for the
payoff comparison to learn their strategies when conducting
strategy updates.

Considering the reality that the game models of individuals
will transform from one game model to another, we regard
the game model utilized by an individual as a Markov chain,
where the game model represents the state space of the Markov
chain. In other words, the future game model of an individ-
ual is independent of the past game models and only relies
on the current game model, but it is also related to the past
game models while the correlation is so weak that it is almost
negligible. Besides, this assumption has been proved to be
reasonable by many studies [34], [35]. In the following anal-
ysis, we present the Markov chain of individual game states,
introduce the reputation into the game between network indi-
viduals, and give some definitions and theoretical analysis to
obtain the limit distribution of the n game states.

A. Markov Chain of Individual Game States

First, we introduce the process of individual game state tran-
sitions, which is depicted by a Markov chain. The game state
of each individual j in the population can be considered as a
Markov chain, denoted as {X;(7), 7 > 0} with the state space
E; = {Go, G1, ..., Gy}, where the integers 0, 1, ..., n describe
n different game models, respectively, such as the PDG, SDG,
stag hunt game, etc. It is worth mentioning that the individual’s
game model is the individual’s game state, i.e., they are equiv-
alent. Besides, we suppose that an individual will transform
the game state G; into the game state Gj;1 at an exponential
rate, A;, whereas the game state G4 transitions to G; at an
exponential transition rate ;1. This means that the duration
of an individual holding a game state in the network follows an
exponential distribution, and it will become another game state
if the duration finishes. As an example, Fig. 1 clearly shows
the transition of an individual game state, which can also be
described as the game evolution of individuals. Suppose that
all individuals in the network adopt the game state Gy at the
beginning of the evolutionary process, the individuals stay in
the game state Gy for a time duration following an exponen-
tial distribution with rate A¢ and then turn the game state Gj.
Subsequently, the individual will perform G» at an exponential
rate A1 or Go at an exponential rate (1.

B. Game Model and Strategy Evolution

In this section, we will explain the interaction between indi-
viduals, including the calculation of individuals’ payoffs and
the evolution of strategies. In each evolutionary time step,
each individual will play a certain game with each neigh-
bor to obtain a payoff, which is related to the individual’s
game state and different strategic interactions. Specifically,
when individuals are staying at game state G;, mutual coopera-
tion (C, C) leads to a “reward” of R; for the individual, while
mutual defection (D, D) brings a “punishment” outcome to
an individual payoff of P;; unilateral cooperation results in a
“sucker’s payoff” of S; for the cooperator, while for the defec-
tor, an individual receives a “temptation to defect” of T;. Thus,
the payoff matrix for an individual playing the game G; can
be expressed as below

R, S
Mi:(ﬂ' Pi>. (1)

We note that different orders of parameters (R;, S;, T;, and
P;) will yield different social dilemmas as long as the four
conditions (R; > P;, R; > Sj, 2R; > T; + S;, and T; > R; or
P; > S;) are satisfied, which clearly portray the conflict between
individual and collective benefits in social dilemmas. In par-
ticular, this conflict is manifested as follows: from a collective
perspective, a combination of co-cooperation (C, C) strategies
is better than unilateral cooperation (C, D) or unilateral defec-
tion (D, C); from an individual perspective, co-cooperation
(C, O) is better than co-defection (D, D). However, under the
effect of the individual’s greed characteristic (7; > R;) or
the fear of the game opponent’s choice of defective strategy
(P; > S;), the individual chooses the defective strategy, thus
producing a result that conflicts with the collective benefits.

In order to better coincide with reality, we also take the
reputation characteristics of the individuals into account. At
the beginning of the evolution, each individual j will be given
a random number to represent his/her own reputation value
Rej. In addition, the individuals’ reputations will evolve over
time as well as their strategies and are related to the individ-
uals’ behaviors. The reputation possessed by the individual is
evaluated by the third-party assessment system, which is sim-
ilar to the credit agency in reality. Therefore, the reputation
information about the individual is open to members of the
public group, i.e., all individuals in the network can be aware
of the reputations of their neighbors. Moreover, the reputations
of individuals at time step # + 1 depend on their behavior at
the time step 7. The reputation of individual j will increase
by § if the individual is a cooperator in the previous step,
otherwise, it will decrease by § if the individual is a defector
in the previous step, in which § indicates the unit of reputa-
tion change. Consequently, the update rule of the reputation
of individual j can be denoted as follows:

! I __
Rej+8,sj—C

t+1 _
Re; _{Re;—a, si=D 2)

where sjt» represents the strategy adopted by individual j at the
time step f.
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For the update rule of individual’s strategy, consistent with
most previous studies, we utilize the Fermi process, i.e., indi-
viduals will adopt the strategy of individuals with higher
payoffs than themselves with a higher probability. However,
different from previous studies, when the individuals select
another individual for payoff comparison and update their
strategies, they do not randomly choose from their neighbors,
but choose the individual with a higher reputation with a higher
probability, i.e., the probability of an individual j to choose
another individual ;" is determined by IT;,

Rej/
Zrel’} Re”

where [ is the set of neighbors of individual j. For the update
of strategy, if individual j chooses neighbor j/, then j will
adopt j’s strategy in the next time step with the following
probability:

Iy, = 3)

1
1 + (Ui=Ui)/x

where s; and U; indicate the strategy and payoff of individ-
ual j, respectively, and « represents the noise factor, which is
employed to portray the irrational choices of individuals in the
game.

4)

P(sj <« sj/) =

C. Definitions and Theoretical Analysis

In this section, we hereby give some required notations,
definitions, and theoretical analysis for the expectation of the
number of individuals playing a certain game state in the
network when the evolution is stable. As stated above, the
game state of each individual will change as time progresses,
which will result in a change in the number of individuals
playing a certain game in the network. Therefore, we give the
definitions as follows.

Definition 1: {N;j(t),t > 0} denotes a stochastic process of
the number of individuals staying in the game state G; with
the state space 2; = {0, 1, ..., N}, where N represents the
scale of the network.

In Definition 1, the state space €2; describes the possible
values of individuals in the network that stay in game state
G; at each moment, where it takes the largest value of N,
which means that all individuals in the network are playing
game G; at this time, while the number of individuals in other
game states equals to 0. Next, we define the probability of
transferring the game state Gy to G, of individual j as below.

Definition 2: pﬁc,y(Ah) denotes the probability that the game
state conducted by the individual j is G, and will turn to Gy in
the time interval Ak, which can be represented as a conditional
probability

®)

where Gy and G, € {Gy, Gy, ..., G,} as the game state space
and X;(¢) represents the game state conducted by the individual
J at time t.

According to Definition 2, we give the following definition
of the rate that the game state conducted by the individual j
is G, and will next transfer to G,.

Piy(Ah) = P{X;(t + Ah) = Gy|Xj(1) = G}

Definition 3: qfv,y denotes the transition rate of differ-
ent game states corresponding to the transition probability
pﬂc,y(Ah), which can be expressed as follows:

lim ’/‘”—‘;'(t), xX#£y

t—0t

gy = (6)

lim I_ch,y(t) ,
t—0F
where G, and G, € {Gy, G1, ..., G,} as the game state space.
Definitions 2 and 3 describe the transition probability and
transition rate, respectively, for the game state of the individual
J in the network turning from Gy to Gy. Then, we present the
limit probability of the individual j conducting the game state
G, as follows. ‘
Definition 4: The probability p]y(t) that the individual j
conducts the game state G at time ¢ is denoted as below

P, = P{X;() = G,} (7)

where Gy € {Go, G1, ..., Gy} as the game state space. Besides,

we have p’y denote the limit probability as follows:
=l = Jimp )

if the probability converges to some values when ¢ — oo.

In Definition 4, we depict the steady-state probability or the
stationary probability distribution of the game state conducted
by individual j in the network, which means that we can get
the probability that the game state of individual j is G, when
t — oQ.

Notably, the input process for the game states Go and G,
is a single Poisson process with variable rates since the input
rate is only related to the number of individuals currently in
G and G,,_1, respectively. However, the input for game state
G;i (1 <i<n—1)is a component of the input of individuals
from the game states G;_1 and Gj41, which indicates that it
is a compound Poisson flow.

In order to prove the stationarity of the number of indi-
viduals performing a certain game state in the network,
we first carry out two lemmas. In the game state space
{Go, G1, ..., Gu}, we have the following lemmas to hold

Lemma I: Supposing that the limit probability p’y exists,
then we have

xX=y

()

lim, pg(z)’ =0. 9)

Proof: Assume that there exists game state G, €
{Go, Gi, ..., Gy}, which enables limpﬁc(t)/ = s > 0 to satisfy.
Therefore, through the deﬁnitiontgfwlimitation, there exists a
t1, for arbitrary € and those ¢ > f; that makes P —s| < €
satisfy, which suggests that p}(f)’ > s—e. Thus, we can derive
the following limitation:

Jim pl() > pl(n) + lim (s —e)(r—n) =c0  (10)

which contradicts the definition of probability that needs to
belong to [0, 1]. Therefore, our previous assumption does not
hold, i.e., lim pl(r)’ = 0.
=00
The result follows. |
Lemma 1 shows that if we derivate the probability of an
individual staying in the game state G, at t — oo, then the
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derivative is 0, and this lemma is employed in subsequent
proofs of the existence of stationary distribution. According
to (5), we know that the transition probability of the game
state of an individual is independent of the starting time ¢ and
is only related to the time interval Ah, which indicates that
the Markov chain is homogeneous. Besides, for any individual
j in any state ‘Gx, Gy € {Go, Gy, ..., Gy}, there is always a
1 such that pﬁc,y(tl) > 0 follows; at the same time, there is
also a certain 7, following p§ +(t) > 0 satisfies, which means
that all game states are communicated, i.e., the condition of
irreducibility follows. Additionally, again according to (5), we
have llmp’yy(t) = 1, while llmpiy#(t) =0

. ; O, x#y
tl—l>I(I)1+p£"y(t) o {

A (11)

which represents that the Markov chain is continuous. Briefly,
the Markov chain {X;(¢),# > 0} of individual game state is
homogeneous, irreducible, and continuous, which enables us
to derive the existence of its limit distribution.

Lemma 2: For the homogeneous, irreducible, and continu-
ous Markov chain {X;(r),# > 0} with the state space Ej, its
stationary distribution {7y, Gy € E;} exists and follows:

—ma Y M, =0

Gy #GyeE;

12)

where q]y indicates the transition rate of individual j from the
game state G, to other game states.

Remarkably, we suppose that the order of limit and summa-
tion can be swapped in the proof of Lemma 2, but this does
not always satisfy. However, they are valid in most models,
including the birth-death process and all finite state models.
Moreover, based on (12), we can equivalently translate it to
n]q]y ZGH&G CE: niqﬂq, where njq]y can be understood
as the rate at which the process leaves game state G, and
GGy eE; ld, , can be interpreted as the rate at which the
process enters game state Gy. Therefore, in other words, (12)
is also a statement that the rate at which a process enters and
leaves game state Gy is equal, from which we can get the
stationary distribution of the system.

Subsequently, we perform the stationary distribution of the
stochastic process X;(¢) based on Lemma 2.

Theorem 1: In our proposed model, for the stochastic pro-
cess X;(¢) of individual game state, let t — oo, its stationary
distribution exists, and as follows:

é llo)»l 1 (13)
1+Zf 1 um’z,-j--it
and
ni:Mno,l<k<n (14)
WM, -y

According to Theorem 1, we can calculate the probability
that the game state of individual j staying in is Gy when ¢ —
00, i.e., the stationary distribution of the stochastic process
X;(?), and this theorem can further yield the expected number
of individuals conducting each game state in the network.

I'pdale H’s
strategy

@ O Cooperate
O Defect

Fig. 2. TIllustration of the model. Grey, orange, and blue durations represent
the PDG, the SDG, and the SHG durations of individuals, respectively. The
red or green border indicates that the strategy adopted by the individual is
defection or cooperation, respectively. The game state of each individual will
be transformed from one to another at a specific rate. We chose evolution
times ¢t = 40 and ¢ = 80 to observe snapshots of the network. The individual
circled by the red dashed line updates his/her strategy at the next moment, and
he/she will choose the more reputable individual among his/her neighbors with
a higher probability to compare his/her payoff and decide whether to adopt
the neighbor’s strategy.

Update Fs
strategy

=}

EHOIOICICIOIOIOIO,

Theorem 2: For the game state Gy, the expected number of
individuals in the network staying in it is

N

E[Gol = — (15)
OALs-ensAr—1
T+ [
and
NAoAl, - ..y Ap—
E[Gi] = el ";A — 1<k<n
n 0A L, Ar—1
s a1 Sy e
(16)

where N denotes the scale of the network.

Proof: According to Theorem 1, we get the stationary dis-
tribution of the game state for each individual. And because
the game state of each individual in the network is i.i.d.
(independent and identically distributed), the expected num-
ber of individuals staying in game state Gy can be obtained by
multiplying the total number of individuals by the stationary
distribution of individuals staying in game state Gy, i.e.,

E[Gol =N x ), = (17)

I+ Zr—l D5 eees by
Analogously, the expected number of individuals staying in
game state Gy can be expressed as follows:

- NAoAt, ..., Ap—
E[G]=Nx 7 = 021 k-l ,
AQA L, s Ap—1
M2, ey Mk(l + Z,_l m)
1 <k<n. (18)
The results follow. [ |

In Theorem 2, we obtain the expected number of individ-
uals performing each game state in the network based on the
stationary distribution of individuals staying in the game state
in Theorem 1, which is only related to the network size and
the rates in the game transitions.

Overall, in this section, we have described our model in
detail, including the Markov chain of individual game states,
the game model and strategy evolution, and some definitions
and theoretical analysis. Besides, we give an example in Fig. 2
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TABLE I
THREE DIFFERENT TYPES OF GAME STATES ALONG WITH THEIR PAYOFF PARAMETERS AND DILEMMA DESCRIPTIONS

Game states Parameters

Dilemmas

Stag-hunt game
Snowdrift game

Weak prisoner’s dilemma game

R=1>T=r>P=0>5=—r
T=14r>R=1>S=1-r>P =0
T=bR=1>P=5=0

Players prefer mutual defection to unilateral cooperation.
Players prefer unilateral defection to mutual cooperation.

Players prefer mutual defection to unilateral cooperation.

A time-axis of individual F’s game
transition and strategy update

PDG SDG @ SHG PDG SDG ~ — SHG
O Cooperate O Defect
Fig. 3. Example diagram of the evolutionary time of an individual’s game

state and strategy. This figure illustrates the game transition and strategy
update process for individual F. The game transition of individual F is deter-
mined by his/her specific transition rate, while the timing of strategy updates
can follow different rules.

to make our model more explicit. There are eight individuals
in the network, gray, orange, and blue represent individuals
located in different game states, and the different colored bor-
ders of individuals indicate the different strategies taken by the
individuals. We choose evolution times r = 40 and ¢ = 80 to
observe snapshots of the network and notice the strategy evo-
lution of an individual, which is circled by the red dashed line.
Specifically, both evolutionary game and game evolution are
involved in this figure. A change in the border color indicates
the updating of the strategy, i.e., a round of the evolution-
ary game, while a change in the internal color represents the
updating of the game state, i.e., a round of game evolution. In
Fig. 3, we show a time-axis representation of strategy updates
and game transitions for individual F. The gray, orange, and
blue colors on the time-axis indicate that the current game
played by F are PDG, SDG, and SHG, respectively. The times
1;(0 < i < 6) represent the moments when F updates strategy.
It is important to note that an individual’s game transition time
is determined by a specific transition rate, while the timing of
strategy updates can follow different rules. For instance, the
time interval for strategy update can be fixed to a value or
it can adhere to a certain distribution. As a result, the time
scales of game transitions and strategy updates of individuals
are different. In the following section, we will implement sim-
ulations to verify the validity of our model and analyze the
evolution of cooperative behavior in the network.

III. SIMULATION RESULTS AND DISCUSSIONS

In this section, we will conduct some simulations to verify
the model we proposed. In detail, we first illustrate the meth-
ods, which will be utilized in the following simulations. Then,
we investigate the number of individuals staying in different
game states in the second section. Subsequently, the evolution

of cooperative behavior in the networks is investigated, includ-
ing the influence of the transition rates between different game
states, payoff parameters with and without reputation mech-
anism, different time scales of strategy updates, and network
scale on the cooperation frequency.

A. Methods

Herein, we explain some methods for our subsequent sim-
ulations. For the setting of the payoff matrix in (1), as usual,
we normalize the advantage of the total payoff of mutual
cooperation over that of mutual defection to 2 in all types
of social dilemma games by making the reward R; = 1
and the punishment P; = 0. Additionally, if an individual
adopts the cooperative strategy, while the other one adopts
the defective strategy, the cooperator and the defector receive
the S; € [—1, 1] and the T; € [0, 2], respectively. Therefore,
based on the relative ordering of R; = 1, P; =0, §;, and T,
four different types of games can be obtained by dividing the
two-dimensional (2-D) T-S parameter region: 1) the harmony
game (HG); 2) the PDG; 3) the SDG; and 4) the SHG, of
which only the latter three games are social dilemma games,
while the HG is not since the dominant strategy is cooperation
in this situation. To verify the developed theory, we focus on
the game between individuals with three game states, includ-
ing the PDG, SDG, and SHG, which are three different social
dilemma games, and the payoff parameters of the three games
are shown in Table I. The transition relationships between the
three game types are: the game state of each individual will
change from PDG to SDG at a specific rate X9, from SDG to
SHG at a rate A1 or to PDG at a rate u, and from SHG to
SDG at another specific rate u;. The networks in which the
individuals are located are a WS small-world network (WS)
with 10000 nodes and a square lattice network with periodic
boundary (SL) with 200 x 200 nodes, which will be generated
by the function watts_strogatz_graph() of package networkx
in Python and our custom function, respectively. At the initial
moment, the strategies of individuals are chosen from cooper-
ate and defect with equal probability and all individuals are in
the game state PDG, which means that the number of individ-
uals performing SDG and SHG is 0. Moreover, each individual
will be given a random number located in the interval (0, 4) to
represent his/her reputation value Re, which basically follows
the Gaussian distribution Re ~ G(u, 62), where p is the mean
value and is set to 2, whereas o is the standard deviation and is
set to 0.6. Furthermore, the unit § of reputation change in (2) is
fixed to 0.04 and the noise factor « in (4) is fixed to 0.1 in all
simulations. Additionally, we let RejtfIrl = (6/2) if Re]’- —-§<0
and let ReJ’.Jrl = 4 if Ref{+8 > 4, thus trying to ensure that the
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Evolutionary curves of the individual number staying in different game states over time with different parameters. (a) shows the evolution of the

individual number obtained from the initial setting of the parameters with A9 =0.02, A1 =0.06, ;1 =0.04, p =0.08, and the other subplots are acquired by
adjusting a parameter by the control variable method on the initial parameter settings. Specifically, (b) illustrates the individual number with Ag changed to
0.04. (c) shows the individual number with A adjusted to 0.12. (d) is the individual number with p| changed to 0.08. and (e) demonstrates the individual
number with py changed to 0.16. As time progresses, the number of individuals in each of the three game states gradually becomes stable.

reputation of the individual is in a reasonable scope. In par-
ticular, we emphasize that the time scales of game transitions
and strategy updates are different. The evolutionary time of an
individual’s game state is related to its specific game transition
rate, while the time of an individual’s strategy update is car-
ried out by following other rules. All simulation evolutionary
steps are set to T = 10*, and the final results of each set of
parameters are averaged over five independent simulations to
maintain a good accuracy of the simulation results.

B. Number of Individuals in the Different Game States

As mentioned in our model, the game state of each individ-
ual changes dynamically during the evolutionary process. We
first study the evolution of the number of individuals conduct-
ing three different game states in the network under different
parameters. As is proved in Theorem 2, the number of indi-
viduals in the three game states is only related to the transition
rates (Lo, A1, 1, and pp) but not to the network type. Thus,
we do not consider the network type as a variable. Besides,
we set the evolution time to be large enough (7 = 10%) to
ensure that the number of individuals in the three game states
reaches a stationary level and set the x-axis in a logarithmic
coordinate to better observe the ascent and descent stage in
the evolutionary process.

The evolutionary curves of the individual number staying
in different game states over time with different parameters
are demonstrated in Fig. 4, where the blue circles, black tri-
angles, and red squares denote the individual number of PDG,
SDG, and SHG varying with time, respectively. The transi-
tion rates of the game states in Fig. 4(a) are set to A9 = 0.02,
A1 =0.06, 1 = 0.04, and o = 0.08, and the rest of the plots
are obtained by using the control variable method to change
one parameter while keeping the other parameters constant. It
can be clearly seen that the individual number in each game
state becomes stationary around ¢t = 100 regardless of the
value of transition rates and then fluctuates around a certain
value. The subplots in Fig. 4 also show that the number of
individuals in the PDG tends to gradually decrease and then
stabilize, while the number of individuals in the SDG and SHG
tends to gradually increase and then stabilize. This is due to
the fact that we set all the individuals in the network to be
located in PDG at the initial moment, while the number of
individuals located in SDG and SHG is 0. The difference in

the subplots is the number of individuals located in the three
game states at the steady state. Concretely, the individual num-
ber in the PDG, SDG, and SHG finally reaches about 530, 268,
and 202, respectively, in Fig. 4(a). Fig. 4(b) shows the evolu-
tionary curves with A9 = 0.04, which is twice larger than that
in Fig. 4(a) and the other parameters (A, (1, and p7) remain
the same. The individual number of PDG reduces to about
365, while the individual number of SDG and SHG grows to
about 364 and 271, which indicates that a larger Ao causes
the transition of some individuals located in the PDG to SDG
and SHG. By setting the A; = 0.12, Fig. 4(c) depicts the indi-
vidual number of PDG, SDG, and SHG eventually fluctuating
around 449, 222, and 329, respectively. In Fig. 4(d), where the
w1 is set to be 0.08, the stationary number of PDG, SDG and
SHG becomes 701, 171, and 128, meaning that some individ-
uals will change from SDG and SHG to PDG by increasing
w1. Fig. 4(e) with uo = 0.16 demonstrates that the number
of individuals conducting SHG reduces to approximately 110,
while the number of individuals conducting PDG and SDG
increases to approximately 593 and 297, which suggests that
a larger value of w, results in some individuals performing
SHG change to perform PDG and SDG.

According to our theory, the number of PDG,
SDG, and SHG performed in the network should be
npy o/ (e p 4+ Aopz +Aort), nhopa/ (12 + Aoz +AoAr),
and nioAi/(ip2 + Aoz + Aor1) when the stationary state
is reached, which indicates that the number of individuals in
a certain game state is only related to the size of the network
and the transition rates of the game state. Subsequently,
we show the simulated scale distributions of the number
of individuals staying in three game states. The results are
shown in Figs. 5 and 6, where Ao and A; are employed as
independent variables, respectively. Concretely, we record
the number of individuals in three different game states
at the last 9000 steps of a total of 10* steps, and the
number of individuals has evolved stably (as can be seen in
Fig. 4). Next, we utilize the function Counter of package
collections in Python to count the frequency of each number
of individuals and treat the frequency as probability according
to the law of large numbers. By setting the parameters
A1 = 0.06, u1 = 0.04, ur = 0.08, we demonstrate the statis-
tical distributions of the individual number staying in PDG,
SDG, and SHG with different Ags (A9 = 0.01, 0.05, and 0.09)
in Fig. 5(a)-(c), from which we get that each probability
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TABLE 1T
RESULTS OF THE STATIONARY NUMBER OF INDIVIDUALS STAYING IN DIFFERENT GAME STATES WITH 1| = 0.06, u1 = 0.04, up = 0.08

Ao = 0.01 Ao = 0.05 Ao = 0.09
Results
PDG SDG SHG PDG SDG SHG PDG SDG SHG
Theoretical results | 695.652 173913  130.435 | 313.725 392.156 294.118 | 202.532  455.696  341.772
Simulation results | 695.081 174303  130.611 | 313.900 392.101  293.999 | 201.954 456.265 341.781
Relative error 0.082%  0.224%  0.135% 0.056% 0.014%  0.041% 0.285%  0.125%  0.003%
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Fig, 5. Statistical results of the individual number staying in different game Fig. 6. Statistical results of the individual number Staying in different game

states with different Ags. In this figure, we present the statistical distribution
of the individual number in the network in the three game states with different
parameters Ags. The x-axis and y-axis are set as the number of individuals
and probability, respectively. (a) is the statistical distribution of the individual
number staying in the PDG. (b) displays the statistical distribution of the
individual number located in the SDG. And (c) demonstrates the statistical
distribution of the individual number located in the SHG.

distribution approximately follows a normal distribution.
Besides, in Fig. 5(a)-(c), for A9 = (0.01,0.05,0.09), the
most probable number of individuals staying in PDG, SDG,
and SHG are approximately (695, 314, 202), (174, 392,
456), and (131, 294, 342), respectively. It can be clearly seen
that the distributions in Fig. 5 are narrow bands, i.e., the
deviations are small.

We also compare our theoretical results with the simulation
results in Table II to further verify our theory. The relative
error is calculated by e = |x — x*|/x, where x is the theoret-
ical result and x* is the simulation one. The maximum value
of the relative error in Table II equals 0.285%, which means
that the results obtained from the simulation are very close
to the theoretical results and demonstrate the validity of our
theoretical analysis in Theorem 2. Furthermore, we can see
that the number of individuals staying in PDG will reduce as
the transition rate Ao grows, while the number of individuals
located in SDG and SHG will increase.

Next, we show the statistical distributions of the individ-
ual number staying in PDG, SDG, and SHG with different
values A1 (A1 = 0.02,0.06, and 0.10) in Fig. 6(a)—(c), where
the other parameters are set as Ag = 0.02, u; = 0.04, and
n2 = 0.08. We see that the horizontal coordinates correspond-
ing to the peaks of individuals located in the same game state

states with different Ays. In this figure, we show the statistical distribution of
the individual number in the network in the three game states with different
parameters Aps. The x-axis and y-axis are set as the number of individuals
and probability, respectively. (a) is the statistical distribution of the individual
number staying in the PDG. (b) displays the statistical distribution of the
individual number located in the SDG. And (c) demonstrates the statistical
distribution of the individual number located in the SHG.

are different for different A;. In detail, in Fig. 6(a), the most
probable number of individuals staying in PDG with A1 = 0.02
marked by the purple diamond, A1 = 0.06 marked by the
orange circle, and A1 = 0.10 marked by the green triangle are
about 615, 533, and 471, respectively. For Fig. 6(b) and 6(c),
the horizontal coordinates corresponding to the peaks of indi-
viduals located in SDG and SHG are around (308, 267, 235)
and (77, 200, 294), respectively. Analogously, we calculate the
relative error to further verify our theory, and the results are
shown in Table III, from which we infer that all the relative
errors are less than 0.549%, which also illustrates the accu-
racy of our theoretical analysis in Theorem 2. Furthermore, we
obtain that the distributions of Fig. 6 are wider than that of
Fig. 5, which suggests that the deviations of Fig. 6 are larger.
Fig. 6 also exhibits that the number of individuals staying in
PDG and SDG will decrease as the transition rate A increases,
while the number of individuals located in SHG will grow.

C. Effect of yu; and 2 on the Cooperation Density

In this simulation, we investigate the influence of the transi-
tion rates | from SDG to PDG and u, from SHG to SDG on
the cooperation of WS and SL networks. Except 11 and u», by
fixing the parameters b = 1.5, r = 0.5, and 19 = A1 = 0.03,
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TABLE III
RESULTS OF THE STATIONARY NUMBER OF INDIVIDUALS STAYING IN DIFFERENT GAME STATES WITH A = 0.02, 1 = 0.04, up = 0.08

A1 = 0.02 A1 = 0.06 A1 =0.10
Results
PDG SDG SHG PDG SDG SHG PDG SDG SHG
Theoretical results | 615.385  307.692  76.923 | 533.333  266.667 200.000 | 470.588 235294 294.118
Simulation results | 613.697  309.382  76.921 | 533.699 267.122  199.179 | 470.813 235520  293.668
Relative error 0.274%  0.549%  0.003% | 0.069%  0.171%  0.411% | 0.048%  0.096%  0.153%
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Fig. 8. Heat maps of cooperation frequency with respect to parameters A

Fig. 7. Plots of cooperation density against 11 under different j1o. By setting
the payoff parameters b = 1.5 of PDG and r = 0.5 of SDG and SHG, we
present the cooperation density against 1 under different ys on the WS (in
subplot (a)) and SL (in subplot (b)) networks, respectively, where the x-axis
is set as w1, which denotes the transition rate from SDG to PDG, while the
y-axis is set as the cooperation density. The range of each x-axis is set as
[0.005, 0.05], whereas the ranges of y-axis of subplot (a) and subplot (b) are
set as [0.5, 1] and [0.45, 1], respectively. In general, it can be seen that the
increases of both w1 and p, inhibit the cooperation density on the WS and
SL networks.

we show the function of the cooperation frequency (f.) on u
under different u; in Fig. 7.

As shown both in Fig. 7(a) and (b), we yield that the
frequency of cooperation decreases as (1 and po increase on
both the WS and SL networks, i.e., both i and p, act as
a disincentive to the cooperative behavior of the networks.
Moreover, under the same conditions (the same @1 and w»),
the proportion of cooperation on the WS network in Fig. 7(a)
is higher than that on the SL network in Fig. 7(b), which
implies that the WS network facilitates the evolution of coop-
eration more than that of the SL network. Furthermore, within
the same range of parameter wi, different p, have differ-
ent degrees of decline. For example, on the SL network
in Fig. 7(b), the cooperation frequency corresponding to
n2 = 0.02 decreases from 1 at the beginning to 0.57 at the
end, the cooperation frequency corresponding to up, = 0.04
decreases from 0.68 to 0.48, while the cooperation frequency
corresponding to (2 = 0.06 decreases from 0.60 to 0.46, and
the degree of decrease in these three cases are 0.43, 0.20, and
0.14, respectively. Therefore, we can derive that the degree of
decline of f, decreases with increasing ;.

Subsequently, we make an explanation of the above phe-
nomenon in Fig. 7. Primarily, the three game models have
different Nash equilibria, with (D, D) for PDG, (D, C) for
SDG, and (D, D) or (C, C) for SHG. When the rate of tran-
sition from SDG to PDG is greater than the rate of transition
from PDG to SDG, i.e., ;41 > Ag, there will be more individu-
als in the network who tend to choose defect. In a similar way,
some individuals in the network will change from cooperators

and Aq. This figure demonstrates the influence of A and A on the cooperation
frequency on the WS (in panel (a)) and SL (in panel (b)) networks. We set
the payoff parameters b = 1.5 of PDG and r = 0.5 of SDG and SHG. The
x-axis is set as the Aj; with the range [0.005, 0.05], which represents the
transition rate from SDG to SHG, and the y-axis is set as the Ag with the
same range, which indicates the transition rate from PDG to SDG. Both WS
and SL networks demonstrate that not only parameter A but also parameter
A1 can facilitate the emergence of cooperation.

to defectors when the rate of transformation of SHG to SDG
is greater than the rate of transformation of SDG to SHG, i.e.,
u2 > 1. Besides, a larger difference in the transition rate will
lead to the above phenomenon being exacerbated, namely, the
percentage of cooperation in the network becomes lower. Both
Ao and A are fixed in the simulations of Fig. 7, so the coop-
erative behavior will be suppressed with the increase of u
and ).

D. Influence of Ao and A; on the Cooperation Frequency

As shown in Section III-C, the transition rates @; and up
have a large effect on the cooperative behavior, and in this
section, we will explore the influence of A9 and A; on the
evolution of cooperation on WS and SL networks. By fixing
the payoff parameters b = 1.5 and r = 0.5, and the other two
transition rates p©1 = 0.03 and pur, = 0.02, we present the
heat maps of the cooperation frequency with respect to
the parameters Ao and A; in Fig. 8, where a warmer color
(the color is closer to red) means a higher percentage of coop-
eration. The cooperation frequency of each parameter pair
(A1, Ap) is averaged by 5 independent simulations, and the
cooperation frequency in each simulation is gained by aver-
aging the last 500 steps of cooperation density in the total of
10* evolution steps. In Fig. 8(a), we see that the color changes
from cool (blue) to warm (red) as A9 and X; grow, which
indicates that the cooperation ratio is enhanced. Additionally,
pure cooperators will appear on the WS network when both
Ao and Aj are large (e.g., Ao > 0.035 and A1 > 0.035), while
almost no pure defectors will emerge in the network no matter
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Fig. 9. Heat maps of cooperation density about parameters b and r. By setting
the x-axis as the payoff parameter b with range [1, 2] and y-axis as the payoff
parameter r with range [0, 1], we show the heat maps of cooperation density
on WS (in subplot (a)) and SL (in subplot (b)) networks with respect to payoff
b and r, from which we can obtain that the cooperation will be promoted by
decreasing the payoff parameter b or r.

how small Ag and A; are. In Fig. 8(b), the SL network also
exhibits an overall increase in the proportion of cooperation
with increasing parameters Ag and X1, which is consistent with
the phenomenon on the WS network. However, what is differ-
ent from the WS network is the presence of many defectors
on the SL network, which appears when A is very small. The
region where pure cooperators appear on the SL network is
also narrower than that on the WS network and only appears
when both Ap and A; are very large (e.g., Ao > 0.045 and
A1 > 0.045).

As explained in Section III-C, SDG facilitates the emer-
gence of cooperation more than PDG, but less than SHG for
the evolution of cooperation. The parameters A9 and A| mean
the transition rate from PDG to SDG and the transition rate
from SDG to SHG, respectively. Therefore, increasing both
parameters can facilitate the transformation of the game model
toward a game model that is more conducive to the emergence
of cooperation. In addition, we obtain that the WS network is
more favorable to the survival of cooperators than that of the
SL network by comparing Fig. 8(a) with Fig. 8(b), which is
in accordance with our previous analysis.

E. Effect of Payoff Parameters on Network Cooperation
Behavior

In our previous study, we focused on the effect of the game
state transition rate on the cooperative behavior of the network,
while fixing the payoff parameters b and r. Herein, we will
investigate the effect of the payoff parameters b and r on the
evolution of network cooperation by fixing the other parameters
except for the payoff parameters. Specifically, we set the four
transition rates between PDG, SDG, and SHG as Ao = 0.015,
A1 = 0.01, u; = 0.03, and ur = 0.02. The results of the
evolution of the cooperation ratio about b and r on the WS and
SL networks are shown in Fig. 9(a) and (b), respectively. In the
WS network, pure cooperators will emerge with small b and r
(e.g., b < 1.2 and r < 0.3), while pure defectors will appear
with very large b and r (e.g., b > 1.9 and r > 0.8), which can
be seen from Fig. 9(a). While in the SL network, unlike the
WS network, pure cooperators will emerge with very small b
and r (e.g., b < 1.05 and r < 0.05), while pure defectors will
appear with large b and r (e.g., b > 1.7 and r > 0.7), which
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Fig. 10. Heat maps of cooperators about parameters b and r without rep-
utation mechanism. This figure displays the influence of » and r on the
cooperation density on the WS (in panel (a)) and SL (in panel (b)) networks
without reputation mechanism and the parameter settings are exactly the same
as in Fig. 9. Both networks exhibit a decrease in the number of cooper-
ators who consider only the game transitions compared to the combined
consideration of reputation mechanisms.

can be seen from Fig. 9(b). Besides, we can clearly see that
the region of pure cooperators on the WS network is larger
than that on the SL network, while the area of pure defectors
is smaller than that on the SL network, which indirectly proves
that the WS network is more beneficial to the emergence of
cooperators than the SL network. We also note that the color
distribution in Fig. 9 is not strictly ordered, which is likely due
to the randomness of the initial setup and the players deciding
their next strategy based on the previous step.

Next, we give the reasons for the phenomenon arising in
Fig. 9. Primarily, we infer that the payoff parameter b is only
related to the PDG and the payoff of a defector performing
PDG in the network will increase as b grows according to the
parameters of the weak PDG in Table I, leading to individ-
uals who are engaged in PDG being more likely to choose
to be defector than cooperator. Analogously, for the payoff
parameter r, which is related to both SDG and SHG, the pay-
off of a defector conducting SDG and SHG in the network
will rise as r increases, while the payoff of a cooperator
will reduce, resulting in the defective strategy becoming the
preferred strategy for individuals who perform SDG and SHG
in the network. Therefore, we can conclude that the growth of
both the payoff parameters b and r will have an inhibitory
influence on the emergence of cooperative behavior in the
network.

F. Impact of Payoff Parameters on Network Cooperation
Behavior Without Reputation Mechanism

It is worth noting that our previous results show the
effectiveness of the proposed model on the evolution of coop-
eration, but these results depend on the game transition as well
as the reputation mechanism. In this section, we explore the
evolutionary behavior of cooperation in such cases by only
taking the game transition into account. The results of the
cooperative evolution on the WS and SL networks are, respec-
tively, shown in Fig. 10(a) and (b), with exactly the same
parameter settings as in Fig. 9(a) and (b), except that there
is no reputation mechanism.

We observe that the proportion of cooperators still decreases
as b and r increase, whether on the WS or SL networks. Plus,
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Fig. 11. Evolutionary curves of cooperation frequency under different time
scales of strategy updates. This figure shows the evolution of the cooperation
ratio over time on the WS (in panel (a)) and SL (in panel (b)) networks under
different time scales of strategy updates, including fixing the time interval
for strategy updates to 0.5, 1, 5, and allowing them to obey exponential and
power-law distributions, respectively. The results suggest that the cooperation
ratio evolves steadily as time progresses in all cases and that the number of
cooperators with exponential and power-law distributions is higher than fixed
values for the time interval at which individuals update their strategies.

we can also see that the area of dark red in Fig. 10(a) is much
larger than that in Fig. 10(b), while the area of dark blue in
Fig. 10(b) is larger than that in Fig. 10(a), which indicates
that the WS network is more conducive to the emergence
of cooperators than the SL network even without the repu-
tation mechanism. In addition, by comparing Fig. 9(a) with
Figs. 10(a) and 9(b) with Fig. 10(b), we can find that although
their conditions for the emergence of pure cooperators are sim-
ilar, the circumstances for the emergence of pure defectors on
Fig. 10(a) and (b) are much greater than those on Fig. 9(a) and
(b), which can be gained from the areas of dark red and dark
blue in the four figures. Therefore, through this comparative
experiment, we get that although only taking the game tran-
sition into account can promote the evolution of cooperation,
the promotive effect is weaker than that of both the reputation
mechanism.

G. Different Time Scales of Strategy Updates

In our previous simulations, we conducted strategy updates
at integer time for individuals. In this simulation, we inves-
tigate the impact of different time scales of strategy updates
on the evolution of cooperation. Specifically, we explore sce-
narios where the time interval of strategy update follows
fixed values (0.5, 1, 5), exponential and power-law distribu-
tions. The evolutionary curves of cooperation fractions over
time are illustrated in Fig. 11(a) and (b) for WS and SL
networks, respectively. The sizes of WS and SL networks
are set to 10000, and other parameters are configured as
A = 1 = 003,41 = 0.04, up, = 0.02,b = 1.5, and
r = 0.5. To ensure that the cooperation frequency in all cases
reaches a stationary level, we set the evolution time to 20 000.
Furthermore, we utilize a logarithmic scale for the x-axis to
better observe the ascent and descent stages in the evolutionary
process.

From Fig. 11(a) and (b), we observe that the cooperation
frequency steadily evolves as time progresses in all cases and
that the number of cooperators is higher when individuals
update their strategies based on exponential and power-law dis-
tributions compared to fixed time intervals. Furthermore, both
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Fig. 12. Plots of cooperation frequency against network scale under differ-
ent parameters. We present the cooperation frequency against network scale
under different pairs of parameters on the WS (in subplot (a)) and SL (in
subplot (b)) networks, respectively, where the x-axis is set as network scale,
which indicates the number of individuals in the network, while the y-axis is
set as the cooperation frequency. The ranges of x-axis of subplot (a) and sub-
plot (b) are set to [1000, 21000] and [30~, 2102], respectively. It can be seen
that the network scale has almost no impact on the cooperation frequency on
the both WS and SL networks.

plots demonstrate that the time for the evolution of the coop-
eration density to plateau increases as the fixed time interval
of strategy updates grows. This is because individuals are
updating their strategies synchronously in this scenario, and
a smaller fixed time interval results in a higher frequency
of strategy updates by individuals. The distinction between
Fig. 11(a) and (b) is that when the time interval of strat-
egy update follows a power-law or exponential distribution,
the proportion of cooperators on the WS network eventually
reaches 1, while on the SL network, the proportion of coop-
erators does not evolve to 1 and the ratio of cooperators with
exponential distribution is higher than that with the power-law
distribution.

H. Influence of Network Scale on the Cooperation Frequency

In this section, we evaluate the robustness of the model by
examining the influence of network scale on the cooperation
frequency of WS and SL networks under different pairs of
parameters. We demonstrate the variation curves of the coop-
eration frequency on the WS and SL networks with respect
to the network scale for various parameter combinations in
Fig. 12(a) and (b), where the network scales of WS and SL
are, respectively, set as [1000, 21000] and [302, 2102].

In Fig. 12(a) and (b), we present the evolutionary trends of
the cooperator ratio in relation to the network scale for four
different parameter pairs on the WS and SL networks, respec-
tively. Both WS and SL networks exhibit minimal fluctuation
in the evolutionary curves of the cooperator ratio. To quanti-
tatively measure the fluctuation of the cooperation ratio curve,
we calculate the variance of the cooperation ratio for the four
cases. On the WS network, the variances for the four cases,
from top to bottom, are [1.28, 2.05, 1.33, 2.09] x 1075, On
the SL network, the variances for the four cases, from top
to bottom, are [13.88, 1.37,9.20, 2.47] x 1073, These results
indicate that the network scale almost does not affect the
cooperative behavior when the network size is relatively large
(N > 1000), indirectly suggesting the robustness of our model.
Additionally, we observe that the cooperation frequency rep-
resented by blue circles with parameters » = 0.10, b = 1.30 is
higher than that represented by black triangles with parameters
r = 0.30 and b = 1.60. Similarly, the cooperation frequency
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marked by red squares with parameters A9 = 0.01 and 1| =
0.01 is lower than that marked by green diamonds with param-
eters A9 = 0.04 and A1 = 0.02. This implies that increasing the
payoff parameters r and b hinders cooperation while enhanc-
ing the transition rates Ao and A; promotes cooperation, which
aligns with our previous analysis. This phenomenon and con-
clusion can also be observed in the SL network, as depicted
in Fig. 12(b).

IV. CONCLUSION AND OUTLOOK

Research on network evolutionary games has been pro-
viding a framework for understanding the emergence of the
cooperative behavior of groups. In this article, we introduce
the game transition to the game between network individuals
based on Markov processes, which is substantially different
from previous studies. Each individual will transform the game
state G; into the game state Giy] at the rate of A;, whereas
the game state Gjyj transitions to G; at the rate of iy,
where the duration of each individual staying in a certain
game state is subject to an exponential distribution. By giving
some definitions, we provide two lemmas and two theorems
with their proofs, which illustrate the probability distribution
and the expected number of individuals in each game state
when they reach stationary. Additionally, the reputation mech-
anism is introduced into the model to make individuals more
inclined to learn from individuals with high reputations when
they update their strategies, which fits with reality in some
situations. In the simulations, we consider three game states,
including PDG, SDG, and SHG. We primarily investigate the
individual number staying in different game states over time
and their statistical distributions with different transition rates,
whose results are in line with our theoretical analysis. Next,
we analyze the effect of the transition rates between differ-
ent game states on the cooperative behavior of the network
and find that the transition rates mainly affect the individual
game states and yield a change in the individual payoff matrix,
which will afford the individual payoffs to change under the
same interaction and therefore further lead to a change in the
strategies of the individuals. Then, we explore the effect of
the payoff parameters r and b on the cooperation ratio in the
situations when only taking the game transition into account
and taking both game transition and reputation mechanism
into account. The results suggest that an increase in either r
or b will inhibit the emergence of cooperative behavior and
the facilitative effect of cooperation considering both aspects
is stronger than that of only considering the game transition.
Subsequently, we examine the evolution of the cooperation
ratio under various time scales of strategy updates and observe
that the cooperation ratio is higher when individuals update
their strategies based on exponential and power-law distribu-
tions compared to fixed time intervals. Besides, the influence
of different network scales on cooperation is also investigated
and it is found that the network scale has minimal effect on
the number of cooperators, thereby confirming the robustness
of our model.

However, there are some other situations that deserve fur-
ther consideration and study. For example, in this study,

the duration of each individual staying in a certain game
state follows an exponential distribution, while other probabil-
ity distributions, such as the logarithmic normal distribution,
power-law distribution, and uniform distribution, may yield
different theoretical results and new findings. In addition, dif-
ferent strategy-updating rules, such as the Moran process,
best-takeover, and replicator dynamics, can also be consid-
ered in the update process of the strategy and not only the
Fermi function. It is also worth stating that we have investi-
gated the transition of the game between individuals, while the
transition of individual interaction is also worth considering.
All these issues need further work, which will be the goal of
our next stage of research.
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