2024 China Automation Congress (CAC) | 979-8-3503-6860-4/24/$31.00 ©2024 IEEE | DOI: 10.1109/CAC63892.2024.10865736

979-8-3503-6860-4/24/$31.00 ©2024 |IEEE

An evolutionary game with memory-based
reputation in networked populations

I* Ting Ling
College of Artificial Intelligence
Southwest University
Chongqing, China
lingting6729 @ gmail.com

Abstract—The networked evolutionary game theory investi-
gates the emergence of cooperative behaviors in the real world
possible. Many reputation-based studies have made significant
progress. However, reputation is easily forgotten in the real world,
and only the reputation of loyal individuals remains. Therefore,
in this paper, we focus on a reputation updating mechanism
based on forgetting and explore how it influences the emergence
and maintenance of cooperative behavior in complex networks.
We creatively introduce a behavior threshold that influences the
memory of reputation. In the simulation, we show the evolution
of cooperation density over time, discuss the influence of behavior
threshold on cooperation density, and further show the evolution
of cooperators and defectors over time under different thresholds,
which helps us understand the formation of cooperation. Results
show that the mechanism we propose helps to overcome social
dilemmas.

Index Terms—Evolutionary game, Reputation, Cooperation,
Behavioral threshold

I. INTRODUCTION

Cooperation typically refers to the behavior of individuals
or groups working together and supporting each other in
order to achieve their common goals. It is considered a pro-
social behavior [1], involving interdependence and reciprocity
among different individuals. According to Darwin’s theory of
evolution [2], cooperation is not sustainable in nature and
human society. Individuals often exhibit selfish tendencies, and
betrayal for maximum gain appears to be the optimal strategy.
However, numerous instances of cooperative behaviors exist
in the real world [3]. For instance, worker ants willingly
sacrifice themselves to protect the queen and the nest, and
antelopes relinquish their hiding places, exposing themselves
to provide additional escape time for other members of the
herd. Therefore, comprehending cooperation within competi-
tive environment is crucial for elucidating the emergence and
perpetuation of pro-social behaviors in nature. This topic has
aroused significant attention from researchers across diverse
fields [4] [5].

Evolutionary game theory on complex networks provides
a theoretical and powerful framework for investigating this
dilemma. It employs various game models, including the
Prisoner’s Dilemma (PDG) [6], the Snowdrift Game (SDG)
[7] [8], and the Public Goods Game (PGG) [9] [10], to
describe different types of social dilemmas and characterize
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the game process between individuals. Notably, Nowak and
May were first to introduce spatial structure to the Prisoner’s
Dilemma, aiming to study the impact of network connectivity
on cooperative behavior [11]. The research found that although
defection has an evolutionary advantage in the PDG, the
existence of spatial structure can still promote the evolution of
cooperation through local interactions and clustering between
individuals. This study has inspired many scholars to study
the game behavior in networks [12]. Since then, people have
been working to explore evolutionary game models in various
complex network topologies [13] [14], such as small-world
network [15] [16] and scale-free network [17] [18].

In 2006, Nowak proposed five well-known mechanisms,
namely kin selection, direct reciprocity, indirect reciprocity,
group selection, and network reciprocity [19], which effec-
tively promote cooperation. Furthermore, as evolutionary game
theory has continued to develop, other mechanisms such as
submissive behavior [20] [21], memory mechanisms [22] [23],
rewards [24], punishments [25] [26], and reputation [27] have
also been proven to play important roles in maintaining coop-
eration. Among these mechanisms, reputation is a pervasive,
spontaneous, and efficient social control mechanism in natural
societies. Unlike direct reciprocity, any altruistic behavior that
helps others will be rewarded under the reputation constraint
system. Therefore, cooperation will emerge in order to main-
tain a high reputation score [28] [29] [30]. Consequently,
researchers have proposed many interaction scenarios based
on reputation. For instance, Nowak and Sigmund [31] argued
that the emergence of indirect reciprocity was a pivotal step in
the evolution of human societies. Liu and Chen [32] introduced
reputation into different models and discussed the impact of
reputation on evolutionary games from different perspectives.
Wang [33] proposed a model assuming that reputation affects
individual strategy updating. Li [34] found that reputation
heterogeneity has an impact on cooperative evolution.

In real life, we have to face different people every day,
and it is difficult to remember the characteristics of each of
them. Most people will gradually be forgotten over time, and
only those who frequently cooperate will be remembered [35]
[36]. Just like in the long river of history, only the great people
who have made outstanding contributions to the country will
be remembered by posterity. Therefore, in this paper, we
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suppose that reputation is easy to be forgotten, and only those
individuals who have accumulated enough cooperation times
can obtain the lasting reputation, which is also consistent with
the situation in the real world. We assume that the frequency
of cooperation between individuals in the network has an
important influence on the formation of reputation. When an
individual frequently cooperates with other individuals and
exhibits reliable behavior, its reputation will gradually be
established. This reputation will become a reference basis for
other individuals in strategy updates, making those individuals
who have good reputation more likely to be imitated and
adopted.

The rest of this paper is organized as follows. In Section I,
we describe our model in detail, including the node revenue
computation, the reputation update rule and the strategy update
rule. In Section III, we outline the simulation methodology,
give relevant simulation experimental results, and reveal the
hidden information in the results. Eventually, we conclude our
work and give the prospect in Section IV.

II. MODEL

In this section, we introduce our model details, including
node’s payoff, reputation update rule and strategy evolution.

A. Game model

In this paper, we utilize the PDG model for dynamic
evolution. There are two available strategies for participants,
cooperation (C') and defection (D). If both participants choose
cooperation, they both receive the same reward (R). If both
participants choose defection, they both receive the same
punishment (P). However, when facing opposite strategies,
the cooperator receives the sucker’s payoff (.S), while the other
adopting defection receives the temptation (7). In the PDG,
the payoffs R, P, .S, and T satisfy the following conditions:
T>R>P>S5,and 2R > T + S. There exists a Nash
equilibrium (D, D), which means that once both participants
choose defection (D), there is no incentive for anyone to
change anymore. In other words, for an individual, defection
is always the best strategy regardless of the opponent’s choice.
For simplicity, weset R=1, P=0,S = —r,and T = 1+,
where r represents the cost-to-benefit ratio and 0 < r» < 1 is
a regulable parameter. The payoff matrix for the PDG is as

follows
C D

c/ 1 —r
D<1+r 0)' M

B. Reputation update rule

We assume that the reputation of a node can only be retained
until the next iteration in proportion to 5. The reputation of a
node at time step ¢ (¢ > 1) depends on the historical memory
and the current strategy selection. Therefore, the reputation
update formula for a node is as follows

Ri(t) = BRi(t —1) + AR, @

where R;(t) represent the reputation of node 4 at time steps
t. AR denotes the reputation increment of the node based on

181

its strategy. /3 is the decay factor, which primarily depends on
the node’s behavior score IV,

N-T
B 0

For each cooperation, the node’s behavior score increases by
1, and decreases by the same value for each defection. To
investigate the impact of the behavior score on the decay factor
(3, we introduce a threshold value T'. Specifically, if NV exceeds
the threshold 7', § increases with the growth of NN, which
signifies that the node is considered reliable, and a portion of
its reputation is preserved for the next iteration. Moreover, the
larger the value of N, the higher the proportion of reputation
preserved for the next iteration. If N does not exceed the
threshold 7', we consider the node unreliable, and £ is directly
set to 0, implying that the node’s reputation is completely
forgotten. The reputation increment AR is determined by its
current strategy selection, following the rules outlined below

Cc D

c(§5 ¢
5 5)

where ¢ represents the magnitude of reputation fluctuation.
We assume that even when nodes make the same choice to
cooperate, the strategy selections of their neighbors can have
a certain influence on the reputation increment of a node. For
instance, if a node chooses to cooperate while its neighbor
defects, it should gain a higher reputation increment, while it
would lose more reputation if the neighbor also chooses to
cooperate. We found that different values of £ do not affect
the experimental results. For simplicity, we set £ = 1 in this

paper.

N>T

N<T 3)

C. Strategy evolution

Individuals are more likely to adopt the strategy of another
individual with the higher payoff. However, unlike previous
research, we assume that when individuals select and update
their strategies with another individual, they have a higher
probability of selecting an individual with a higher reputation.
In other words, the probability of individual ¢ selecting indi-
vidual j is determined by

W, % )

' Zreri Rir .
Here, I'; is the set of neighbors of individual 7. Since there are
negative values for the reputation of nodes, we use the Sigmoid
function to map the reputation positively before normalization,

, 1
R =

(6)

where R; is the reputation of node j and R/j is the mapped
reputation.

For strategy updating, if individual ¢ selects neighbor j, the
probability that ¢ adopts j’s strategy at the next time step is

1
o 55) = T @
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. N(t-1)>T ‘

AR=-3¢ Ri(t) = BRy(t — 1) + AR

N(t—1)=N(t-2)-1

. Cooperators

Fig. 1: An example of the proposed model. This figure
illustrates the reputation updating rule in a randomly generated
regular network. The red nodes represent defectors, and the
blue nodes represent cooperators. The time axis from ¢ — 1 to
t represents an iteration process. In the left panel, the defector ¢
plays the game on each of the four surrounding nodes, and the
reputation gained increases by AR = —3¢&, while the behavior
scores N;(t — 1) = N;(t —2) — 1 due to the fact that the
node ¢ chooses to defect in the last round. We assume that
N;(t —1) > T in this case, thus the reputation of the node in
this iteration is updated as R;(t) = SR;(t — 1) + AR. Node
1 selects a neighbor for strategy updating with a probability
proportional to its reputation, and finally, in the ¢ —th iteration,
node ¢ becomes a cooperator.

. Defectors

where S; and I1; represent the strategy and payoff of individual
1, respectively x represents the noise factor used to describe the
irrational selections of individuals in the game. Specifically,
the greater the difference in payoff between 7 and j, the more
likely ¢ is to adopt the strategy of j, and vice versa. For
simplicity, we set K = 0.5.

In order to better describe our model, we briefly summarize
the modeling section here. Firstly, we introduced the tradi-
tional PDG and its payoff matrix. Next, we explained our
reputation updating rule, which states that only individuals
who have cooperated above a threshold number of times can
accumulate reputation, otherwise reputation will be forgotten.
Finally, in the strategy updating phase, we select a neighbor
with a probability proportional to reputation and use the Fermi
function for strategy updating. We provides an example of
our model in Fig. 1. In the next section, we will present our
simulation results and analyze them.

ITII. SIMULATION RESULTS AND ANALYSES

In this section, we will conduct some simulations to vali-
date the proposed model. We primarily focus on the impact
of different threshold values 7' on cooperation frequency.
Additionally, to ensure experimental accuracy, we also take
experiments on different network sizes.
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10° 10 10?

iterations
Fig. 2: The evolution of cooperation against time. The hor-
izontal axis is iterations which uses a logarithmic(log) scale,
and the vertical axis is f.. The experiments are conducted on
the 50 x 50 square lattice. We set r = 0.4, and different colors
represent different thresholds. As time evolves, the cooperation
frequency gradually tends to stabilize.

A. Methods

In the initial stage of each simulation, we set the side length
of the square lattice network as L = 50 (L x L = 2500
nodes). Each node is randomly assigned as a cooperator or
a defector, with equal probability of 0.5. According to our
simulation, the evolution process is stable after 3000 iterations.
Therefore, we calculate the cooperation density by averaging
each cooperation density from the 3000th step to the 4000th
step in all following simulations. All simulation results are
carried out on Python.

B. Effect of threshold T on cooperation frequency

The cooperation level usually intrigues and concerns people,
and cooperation frequency f. indicates the proportion of
cooperators as a commonly used indicator of it. Thus, we
explore the evolutionary relationship of f. over time under
different thresholds in our model. We set iterations=5000 to
ensure that f. remains stable after a long period of time. The
results are shown in Fig. 2.

From Fig. 2, it can be observed that f. reaches a steady
state around 3000 steps, and the larger the threshold, the
higher f. in the steady state. At the same time, we can
also find that all of the curves show the same trend and
overlap together at the beginning, and f. all increases and
then decreases before reaching stability. This is because the
behavior score IV of all nodes does not reach the threshold in
initial, the reputation will be completely forgotten regardless
of cooperators defectors in the next round. The reputation of
nodes is only determined by the reputation increment of this
round. Even if neighbors have chosen to defect in previous
rounds, they can obtain high reputation if they choose to
cooperate in this round. There is also the higher probability
of being selected for strategy updates. That’s why f. will
increase rapidly at the beginning, and all curves overlap with

Authorized licensed use limited to: Southwest University. Downloaded on February 16,2025 at 02:24:58 UTC from IEEE Xplore. Restrictions apply.



10 —e— 10
—m— 50
—e— 100
0.8 —— 200
0.6
W
0.4
0.21
0.0
0.0 0.2 0.4 0.6 0.8 1.0
r
(a) L =30

10 —e— 10
—m— 50
—e— 100
0.8 —— 200
0.6
W
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
r
(b) L =50

Fig. 3: Curves of the cooperation frequency f. against the game parameters. This figure presents the cooperation frequency
with the change of the game parameters for 7' = 10, T' = 50, 7" = 100 and 7" = 200. Fig. 3a and Fig. 3b respectively show
the results for L. = 30 and L = 50. Each cooperation frequency point is obtained by averaging the last 1000 evolution steps

in the 4000 total steps.

each other. However, those nodes that frequently choose to
cooperate can easily reach the threshold. While nodes that
often choose to defect need to cooperate more frequently to
compensate for their previous mistakes if they want to keep
reputation. Before reaching threshold, their reputation will still
be forgotten even if they choose to cooperate. Therefore, there
is a situation may be like, a neighbor cooperates many times
and its behavior scores far exceeds 7', its reputation will still be
higher than other neighbors even if he chooses to defect during
this round. When node select neighbors for strategy updates,
he will choose to learn from that neighbor and ultimately
choose defection, that also explains why all curves will decline
after increasing. Furthermore, nodes take different amounts of
time to reach different thresholds. Consequently, curves that
represent different 7" will have different peaks. The larger the
T, the later the peak appears, and the higher the peak value
is.

To focus on the effect of 7" on the frequency of cooperation,
we present the relationship between the cooperation frequency
fe and the cost-benefit ratio 7 in Fig. 3. To show the robustness
of the experiment, we provided the experimental results for
two different network scales, L = 30 and L = 50. We can
find that the experimental results for the two different network
scales are very similar, all of the curves first maintain a pure
cooperation state for a period of time, then the f. value drops
rapidly as r increases, eventually reaching a pure defection
state. Thus, we focus on analyzing the case where L=50. Fig.
3b shows that the pure cooperative state for 7' = 10 lasts only
until » = 0.1, which is the lowest. It is to say that defectors
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start to appear when » = 0.1. For T" = 50 and 7" = 100,
the threshold of the existence of defectors is » = 0.2 and
r = 0.25, respectively, both higher than 7" = 10. And for
T = 200, there is the highest threshold for the existence of
defectors which is 0.3. It provides the largest parameter space
for the pure cooperative state. Additionally, their cooperation
annihilation thresholds are all about 0.6 which means that the
cooperation frequency f. decreases to O when r increases to
0.6. Therefore, we can conclude that the collapse threshold of
pure cooperation will increases if 71" increases. In other words,
a higher 7" is more favorable for pure cooperative state, while
the state of pure defection is not affected by it.

C. Snapshots of effect of threshold T on cooperation frequency

To further discuss the influence of the threshold value T'
on the cooperation frequency in the square lattice network,
we provide the snapshots of cooperators and defectors in
different timestamps. Fig. 4 illustrates snapshots of cooperators
and defectors under different values of 7. From Fig. 4, we
can find that the cooperation frequency increases at first, and
then decreases as the number of iterations increases, which
is consistent with the results in Fig. 2. Cooperators gather
together to counteract the invasion of defectors under different
parameters. In Fig. 4a and Fig. 4e, they are both in the initial
state at t=0, where cooperators and defectors are randomly
distributed on the network. As shown in Fig. 4b and Fig.
4f, their cooperation frequency starts to increase, but their
snapshots almost have no different at this time, because the
time step is still not large enough, and the node’s behavior
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Fig. 4: Snapshots for different parameter 7'. This figure shows snapshots of the cooperation evolution in different 7". Blue
represents cooperator, and white represents defector. The square lattice size is set to 50x50. Initially, 50% of cooperators and
defectors are randomly distributed on the network. The cost-to-benefit ratio » = 0.3. The parameters 7" are 10 and 200 from
top to bottom and the time steps are ¢ = 0, 50, 200, 3000 from left to right.

score has not reached the threshold 7', so different thresholds
have little effect on the cooperation frequency. Comparing
the snapshots in Fig. 4c and Fig. 4g, the latter snapshot
has a higher cooperation frequency than the former. And the
cooperation frequency in Fig. 4c is less than that in Fig. 4b.
That is because some nodes’ behavior scores have exceeded
T under T' = 10 when t = 200, while nodes that often
choose defection previously need to cooperate more times
in order to reach 7', and their reputation will be forgotten
before that, making it difficult for their strategy to be learned
when strategy updating, so the cooperation frequency starts
to decrease. Besides, due to its higher 7', the cooperation
frequency in Fig. 4g is higher than in Fig. 4f. The nodes’
behavior scores have not reached 71" at that time, hence its
cooperation frequency continues to increase. From Fig. 4d and
Fig. 4h, we can find that both of their cooperation frequency
has decreased compared to t = 200, but the snapshot with
the largest threshold in Fig. 4h has a quite higher number of
cooperators than that in Fig. 4d. This is also consistent with
our previous conclusion.

IV. CONCLUSION AND OUTLOOK

In this study, we investigated the influence of memory-based
reputation on cooperation frequency. Primarily, we suppose
the model where nodes’ reputation will be forgotten. Only
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when the node’s behavior score exceeds the given threshold
T, will the node’s reputation be carried over to the next
round in proportion to its behavior score. Then, to further
discuss the impact of 7" on the cooperation frequency, we plot
different curves and conclude that the collapse threshold of the
cooperative state increases as the 7' value increases, meaning
that the larger the 7" value, the more favorable it is for pure
cooperation, while the pure defection state is not affected by
the 7" value.

In this work, we only take the impact of the threshold 7'
on the cooperation frequency into consider, and the node’s
behavior score is quite simply set. More factors need to be
considered in order to get the node’s behavior score in real
life. For example, we can add the evaluation of neighbors
to score the nodes. And we directly set & to 1 in the
reputation increment, while different values of £ may also
have an impact on the cooperation frequency. Additionally,
different interaction and replacement networks can be further
considered. Our model assumption can also be extended to
higher-order interaction among individuals.
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