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Abstract—The networked evolutionary game theory investi-
gates the emergence of cooperative behaviors in the real world
possible. Many reputation-based studies have made significant
progress. However, reputation is easily forgotten in the real world,
and only the reputation of loyal individuals remains. Therefore,
in this paper, we focus on a reputation updating mechanism
based on forgetting and explore how it influences the emergence
and maintenance of cooperative behavior in complex networks.
We creatively introduce a behavior threshold that influences the
memory of reputation. In the simulation, we show the evolution
of cooperation density over time, discuss the influence of behavior
threshold on cooperation density, and further show the evolution
of cooperators and defectors over time under different thresholds,
which helps us understand the formation of cooperation. Results
show that the mechanism we propose helps to overcome social
dilemmas.

Index Terms—Evolutionary game, Reputation, Cooperation,
Behavioral threshold

I. INTRODUCTION

Cooperation typically refers to the behavior of individuals

or groups working together and supporting each other in

order to achieve their common goals. It is considered a pro-

social behavior [1], involving interdependence and reciprocity

among different individuals. According to Darwin’s theory of

evolution [2], cooperation is not sustainable in nature and

human society. Individuals often exhibit selfish tendencies, and

betrayal for maximum gain appears to be the optimal strategy.

However, numerous instances of cooperative behaviors exist

in the real world [3]. For instance, worker ants willingly

sacrifice themselves to protect the queen and the nest, and

antelopes relinquish their hiding places, exposing themselves

to provide additional escape time for other members of the

herd. Therefore, comprehending cooperation within competi-

tive environment is crucial for elucidating the emergence and

perpetuation of pro-social behaviors in nature. This topic has

aroused significant attention from researchers across diverse

fields [4] [5].

Evolutionary game theory on complex networks provides

a theoretical and powerful framework for investigating this

dilemma. It employs various game models, including the

Prisoner’s Dilemma (PDG) [6], the Snowdrift Game (SDG)

[7] [8], and the Public Goods Game (PGG) [9] [10], to

describe different types of social dilemmas and characterize

the game process between individuals. Notably, Nowak and

May were first to introduce spatial structure to the Prisoner’s

Dilemma, aiming to study the impact of network connectivity

on cooperative behavior [11]. The research found that although

defection has an evolutionary advantage in the PDG, the

existence of spatial structure can still promote the evolution of

cooperation through local interactions and clustering between

individuals. This study has inspired many scholars to study

the game behavior in networks [12]. Since then, people have

been working to explore evolutionary game models in various

complex network topologies [13] [14], such as small-world

network [15] [16] and scale-free network [17] [18].

In 2006, Nowak proposed five well-known mechanisms,

namely kin selection, direct reciprocity, indirect reciprocity,

group selection, and network reciprocity [19], which effec-

tively promote cooperation. Furthermore, as evolutionary game

theory has continued to develop, other mechanisms such as

submissive behavior [20] [21], memory mechanisms [22] [23],

rewards [24], punishments [25] [26], and reputation [27] have

also been proven to play important roles in maintaining coop-

eration. Among these mechanisms, reputation is a pervasive,

spontaneous, and efficient social control mechanism in natural

societies. Unlike direct reciprocity, any altruistic behavior that

helps others will be rewarded under the reputation constraint

system. Therefore, cooperation will emerge in order to main-

tain a high reputation score [28] [29] [30]. Consequently,

researchers have proposed many interaction scenarios based

on reputation. For instance, Nowak and Sigmund [31] argued

that the emergence of indirect reciprocity was a pivotal step in

the evolution of human societies. Liu and Chen [32] introduced

reputation into different models and discussed the impact of

reputation on evolutionary games from different perspectives.

Wang [33] proposed a model assuming that reputation affects

individual strategy updating. Li [34] found that reputation

heterogeneity has an impact on cooperative evolution.

In real life, we have to face different people every day,

and it is difficult to remember the characteristics of each of

them. Most people will gradually be forgotten over time, and

only those who frequently cooperate will be remembered [35]

[36]. Just like in the long river of history, only the great people

who have made outstanding contributions to the country will

be remembered by posterity. Therefore, in this paper, we
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suppose that reputation is easy to be forgotten, and only those

individuals who have accumulated enough cooperation times

can obtain the lasting reputation, which is also consistent with

the situation in the real world. We assume that the frequency

of cooperation between individuals in the network has an

important influence on the formation of reputation. When an

individual frequently cooperates with other individuals and

exhibits reliable behavior, its reputation will gradually be

established. This reputation will become a reference basis for

other individuals in strategy updates, making those individuals

who have good reputation more likely to be imitated and

adopted.

The rest of this paper is organized as follows. In Section II,

we describe our model in detail, including the node revenue

computation, the reputation update rule and the strategy update

rule. In Section III, we outline the simulation methodology,

give relevant simulation experimental results, and reveal the

hidden information in the results. Eventually, we conclude our

work and give the prospect in Section IV.

II. MODEL

In this section, we introduce our model details, including

node’s payoff, reputation update rule and strategy evolution.

A. Game model

In this paper, we utilize the PDG model for dynamic

evolution. There are two available strategies for participants,

cooperation (C) and defection (D). If both participants choose

cooperation, they both receive the same reward (R). If both

participants choose defection, they both receive the same

punishment (P ). However, when facing opposite strategies,

the cooperator receives the sucker’s payoff (S), while the other

adopting defection receives the temptation (T ). In the PDG,

the payoffs R, P , S, and T satisfy the following conditions:

T > R > P > S, and 2R ≥ T + S. There exists a Nash

equilibrium (D, D), which means that once both participants

choose defection (D), there is no incentive for anyone to

change anymore. In other words, for an individual, defection

is always the best strategy regardless of the opponent’s choice.

For simplicity, we set R = 1, P = 0, S = −r, and T = 1+r,

where r represents the cost-to-benefit ratio and 0 < r ≤ 1 is

a regulable parameter. The payoff matrix for the PDG is as

follows ( C D
C 1 −r
D 1 + r 0

)
. (1)

B. Reputation update rule

We assume that the reputation of a node can only be retained

until the next iteration in proportion to β. The reputation of a

node at time step t (t ≥ 1) depends on the historical memory

and the current strategy selection. Therefore, the reputation

update formula for a node is as follows

Ri(t) = βRi(t− 1) + ΔR, (2)

where Ri(t) represent the reputation of node i at time steps

t. ΔR denotes the reputation increment of the node based on

its strategy. β is the decay factor, which primarily depends on

the node’s behavior score N ,

β =

{
N−T
N , N > T

0, N ≤ T
. (3)

For each cooperation, the node’s behavior score increases by

1, and decreases by the same value for each defection. To

investigate the impact of the behavior score on the decay factor

β, we introduce a threshold value T . Specifically, if N exceeds

the threshold T , β increases with the growth of N , which

signifies that the node is considered reliable, and a portion of

its reputation is preserved for the next iteration. Moreover, the

larger the value of N , the higher the proportion of reputation

preserved for the next iteration. If N does not exceed the

threshold T , we consider the node unreliable, and β is directly

set to 0, implying that the node’s reputation is completely

forgotten. The reputation increment ΔR is determined by its

current strategy selection, following the rules outlined below

(C D

C ξ
2 ξ

D -ξ - ξ2

)
, (4)

where ξ represents the magnitude of reputation fluctuation.

We assume that even when nodes make the same choice to

cooperate, the strategy selections of their neighbors can have

a certain influence on the reputation increment of a node. For

instance, if a node chooses to cooperate while its neighbor

defects, it should gain a higher reputation increment, while it

would lose more reputation if the neighbor also chooses to

cooperate. We found that different values of ξ do not affect

the experimental results. For simplicity, we set ξ = 1 in this

paper.

C. Strategy evolution

Individuals are more likely to adopt the strategy of another

individual with the higher payoff. However, unlike previous

research, we assume that when individuals select and update

their strategies with another individual, they have a higher

probability of selecting an individual with a higher reputation.

In other words, the probability of individual i selecting indi-

vidual j is determined by

Wi =
R

′
j∑

r∈Γi
R′

r

. (5)

Here, Γi is the set of neighbors of individual i. Since there are

negative values for the reputation of nodes, we use the Sigmoid

function to map the reputation positively before normalization,

R
′
j =

1

1 + e-Rj
, (6)

where Rj is the reputation of node j and R
′
j is the mapped

reputation.

For strategy updating, if individual i selects neighbor j, the

probability that i adopts j’s strategy at the next time step is

P (Si ← Sj) =
1

1 + e(Πi−Πj)/κ
, (7)
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Fig. 1: An example of the proposed model. This figure

illustrates the reputation updating rule in a randomly generated

regular network. The red nodes represent defectors, and the

blue nodes represent cooperators. The time axis from t− 1 to

t represents an iteration process. In the left panel, the defector i
plays the game on each of the four surrounding nodes, and the

reputation gained increases by ΔR = −3ξ, while the behavior

scores Ni(t − 1) = Ni(t − 2) − 1 due to the fact that the

node i chooses to defect in the last round. We assume that

Ni(t− 1) > T in this case, thus the reputation of the node in

this iteration is updated as Ri(t) = βRi(t − 1) + ΔR. Node

i selects a neighbor for strategy updating with a probability

proportional to its reputation, and finally, in the t−th iteration,

node i becomes a cooperator.

where Si and Πi represent the strategy and payoff of individual

i, respectively κ represents the noise factor used to describe the

irrational selections of individuals in the game. Specifically,

the greater the difference in payoff between i and j, the more

likely i is to adopt the strategy of j, and vice versa. For

simplicity, we set κ = 0.5.

In order to better describe our model, we briefly summarize

the modeling section here. Firstly, we introduced the tradi-

tional PDG and its payoff matrix. Next, we explained our

reputation updating rule, which states that only individuals

who have cooperated above a threshold number of times can

accumulate reputation, otherwise reputation will be forgotten.

Finally, in the strategy updating phase, we select a neighbor

with a probability proportional to reputation and use the Fermi

function for strategy updating. We provides an example of

our model in Fig. 1. In the next section, we will present our

simulation results and analyze them.

III. SIMULATION RESULTS AND ANALYSES

In this section, we will conduct some simulations to vali-

date the proposed model. We primarily focus on the impact

of different threshold values T on cooperation frequency.

Additionally, to ensure experimental accuracy, we also take

experiments on different network sizes.

Fig. 2: The evolution of cooperation against time. The hor-

izontal axis is iterations which uses a logarithmic(log) scale,

and the vertical axis is fc. The experiments are conducted on

the 50×50 square lattice. We set r = 0.4, and different colors

represent different thresholds. As time evolves, the cooperation

frequency gradually tends to stabilize.

A. Methods

In the initial stage of each simulation, we set the side length

of the square lattice network as L = 50 (L × L = 2500
nodes). Each node is randomly assigned as a cooperator or

a defector, with equal probability of 0.5. According to our

simulation, the evolution process is stable after 3000 iterations.

Therefore, we calculate the cooperation density by averaging

each cooperation density from the 3000th step to the 4000th
step in all following simulations. All simulation results are

carried out on Python.

B. Effect of threshold T on cooperation frequency

The cooperation level usually intrigues and concerns people,

and cooperation frequency fc indicates the proportion of

cooperators as a commonly used indicator of it. Thus, we

explore the evolutionary relationship of fc over time under

different thresholds in our model. We set iterations=5000 to

ensure that fc remains stable after a long period of time. The

results are shown in Fig. 2.

From Fig. 2, it can be observed that fc reaches a steady

state around 3000 steps, and the larger the threshold, the

higher fc in the steady state. At the same time, we can

also find that all of the curves show the same trend and

overlap together at the beginning, and fc all increases and

then decreases before reaching stability. This is because the

behavior score N of all nodes does not reach the threshold in

initial, the reputation will be completely forgotten regardless

of cooperators defectors in the next round. The reputation of

nodes is only determined by the reputation increment of this

round. Even if neighbors have chosen to defect in previous

rounds, they can obtain high reputation if they choose to

cooperate in this round. There is also the higher probability

of being selected for strategy updates. That’s why fc will

increase rapidly at the beginning, and all curves overlap with
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(a) L = 30 (b) L = 50

Fig. 3: Curves of the cooperation frequency fc against the game parameters. This figure presents the cooperation frequency

with the change of the game parameters for T = 10, T = 50, T = 100 and T = 200. Fig. 3a and Fig. 3b respectively show

the results for L = 30 and L = 50. Each cooperation frequency point is obtained by averaging the last 1000 evolution steps

in the 4000 total steps.

each other. However, those nodes that frequently choose to

cooperate can easily reach the threshold. While nodes that

often choose to defect need to cooperate more frequently to

compensate for their previous mistakes if they want to keep

reputation. Before reaching threshold, their reputation will still

be forgotten even if they choose to cooperate. Therefore, there

is a situation may be like, a neighbor cooperates many times

and its behavior scores far exceeds T , its reputation will still be

higher than other neighbors even if he chooses to defect during

this round. When node select neighbors for strategy updates,

he will choose to learn from that neighbor and ultimately

choose defection, that also explains why all curves will decline

after increasing. Furthermore, nodes take different amounts of

time to reach different thresholds. Consequently, curves that

represent different T will have different peaks. The larger the

T , the later the peak appears, and the higher the peak value

is.
To focus on the effect of T on the frequency of cooperation,

we present the relationship between the cooperation frequency

fc and the cost-benefit ratio r in Fig. 3. To show the robustness

of the experiment, we provided the experimental results for

two different network scales, L = 30 and L = 50. We can

find that the experimental results for the two different network

scales are very similar, all of the curves first maintain a pure

cooperation state for a period of time, then the fc value drops

rapidly as r increases, eventually reaching a pure defection

state. Thus, we focus on analyzing the case where L=50. Fig.

3b shows that the pure cooperative state for T = 10 lasts only

until r = 0.1, which is the lowest. It is to say that defectors

start to appear when r = 0.1. For T = 50 and T = 100,

the threshold of the existence of defectors is r = 0.2 and

r = 0.25, respectively, both higher than T = 10. And for

T = 200, there is the highest threshold for the existence of

defectors which is 0.3. It provides the largest parameter space

for the pure cooperative state. Additionally, their cooperation

annihilation thresholds are all about 0.6 which means that the

cooperation frequency fc decreases to 0 when r increases to

0.6. Therefore, we can conclude that the collapse threshold of

pure cooperation will increases if T increases. In other words,

a higher T is more favorable for pure cooperative state, while

the state of pure defection is not affected by it.

C. Snapshots of effect of threshold T on cooperation frequency

To further discuss the influence of the threshold value T
on the cooperation frequency in the square lattice network,

we provide the snapshots of cooperators and defectors in

different timestamps. Fig. 4 illustrates snapshots of cooperators

and defectors under different values of T . From Fig. 4, we

can find that the cooperation frequency increases at first, and

then decreases as the number of iterations increases, which

is consistent with the results in Fig. 2. Cooperators gather

together to counteract the invasion of defectors under different

parameters. In Fig. 4a and Fig. 4e, they are both in the initial

state at t=0, where cooperators and defectors are randomly

distributed on the network. As shown in Fig. 4b and Fig.

4f, their cooperation frequency starts to increase, but their

snapshots almost have no different at this time, because the

time step is still not large enough, and the node’s behavior
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(a) t = 0 (b) t = 50 (c) t = 200 (d) t = 3000

(e) t = 0 (f) t = 50 (g) t = 200 (h) t = 3000

Fig. 4: Snapshots for different parameter T . This figure shows snapshots of the cooperation evolution in different T . Blue

represents cooperator, and white represents defector. The square lattice size is set to 50×50. Initially, 50% of cooperators and

defectors are randomly distributed on the network. The cost-to-benefit ratio r = 0.3. The parameters T are 10 and 200 from

top to bottom and the time steps are t = 0, 50, 200, 3000 from left to right.

score has not reached the threshold T , so different thresholds

have little effect on the cooperation frequency. Comparing

the snapshots in Fig. 4c and Fig. 4g, the latter snapshot

has a higher cooperation frequency than the former. And the

cooperation frequency in Fig. 4c is less than that in Fig. 4b.

That is because some nodes’ behavior scores have exceeded

T under T = 10 when t = 200, while nodes that often

choose defection previously need to cooperate more times

in order to reach T , and their reputation will be forgotten

before that, making it difficult for their strategy to be learned

when strategy updating, so the cooperation frequency starts

to decrease. Besides, due to its higher T , the cooperation

frequency in Fig. 4g is higher than in Fig. 4f. The nodes’

behavior scores have not reached T at that time, hence its

cooperation frequency continues to increase. From Fig. 4d and

Fig. 4h, we can find that both of their cooperation frequency

has decreased compared to t = 200, but the snapshot with

the largest threshold in Fig. 4h has a quite higher number of

cooperators than that in Fig. 4d. This is also consistent with

our previous conclusion.

IV. CONCLUSION AND OUTLOOK

In this study, we investigated the influence of memory-based

reputation on cooperation frequency. Primarily, we suppose

the model where nodes’ reputation will be forgotten. Only

when the node’s behavior score exceeds the given threshold

T , will the node’s reputation be carried over to the next

round in proportion to its behavior score. Then, to further

discuss the impact of T on the cooperation frequency, we plot

different curves and conclude that the collapse threshold of the

cooperative state increases as the T value increases, meaning

that the larger the T value, the more favorable it is for pure

cooperation, while the pure defection state is not affected by

the T value.

In this work, we only take the impact of the threshold T
on the cooperation frequency into consider, and the node’s

behavior score is quite simply set. More factors need to be

considered in order to get the node’s behavior score in real

life. For example, we can add the evaluation of neighbors

to score the nodes. And we directly set ξ to 1 in the

reputation increment, while different values of ξ may also

have an impact on the cooperation frequency. Additionally,

different interaction and replacement networks can be further

considered. Our model assumption can also be extended to

higher-order interaction among individuals.
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