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a b s t r a c t

Network evolutionary game theory provides a new perspective on how cooperative
behaviors emerge in the real world and has been widely investigated. However, most
studies assume that players are profiteers and ignore the existence of conformists and
that players have memories, which are crucial when people make decisions. In this
study, we study a memory-based snowdrift game occurring on networks and propose
two strategy-updating rules based on profiteers and conformists while considering
the historical strategy, memory strength, payoff information and memory length to
discuss the emergence and maintenance of cooperation behaviors. In contrast to previous
studies, we introduce the player’s degree of cooperation to continuousize player payoffs
and we consider it when defining the player’s strategy-updating rules. In simulations, we
show the evolution of the frequency of cooperation as time progresses and investigate
the effects of the payoff parameter, memory strength, memory length and conformist
ratio on the frequency of cooperation, and further validate the robustness of our model
using different network sizes. Our results show that the memory strength, memory
length, and conformist ratio can facilitate the cooperation level of the network over
a large parameter area, and that the size of the network has almost no effect on the
model, which shows the robustness of our model. Our work may elucidate the study of
evolutionary games with conformists and memory effects.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The emergence of group cooperation behaviors has been a major issue for researchers in various academic fields [1,2].
here have always been cooperators both in nature and human societies. However, a selfish individual has no reason
o give up a defection strategy that could obtain more benefits than that obtained by cooperating with others. This
roblem has always troubled humans. The emergence of network evolutionary game theory has provided a theoretical
nd effective framework for studying this problem. Within this framework, the prisoner’s dilemma game (PDG) [3–5],
nowdrift game (SG) [6–8], and stag hunt game (SHG) [9–11] have been deeply studied. These studies are conducted on
omplex networks, such as square-lattice networks [12], small-world networks [13,14] and scale-free networks [15,16].
omplex networks have rapidly progressed, with various novel network models having been proposed in the recent
ears [17–19]. In networks, each node denotes a player and each edge represents their interaction relationship. Each
layer plays a specific type of game with his/her neighbors and updates his/her strategy according to his/her payoff. In
eneral, the game model and network topology strongly influence the evolution of cooperation. Conversely, to reduce
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he frequency of defectors in a population, the following five renowned mechanisms [20] promoting cooperation have
een proposed: kin selection [21], direct reciprocity [22], indirect reciprocity [23], group selection [24], and network
eciprocity [25–27]. Other proposed mechanisms, such as reward [28], reputation [29], punishment [30], persistence [31]
nd so on [32–35], have proved to be effective in increasing the frequency of cooperators.
Previous studies concerning the evolution of cooperation have largely assumed that players in the network have the

ame payoffs for the same strategy pairs. However, in reality, a player playing a game against two players with the same
trategy may obtain different payoffs, i.e., the payoff obtained by the player is related to the strategy between players and
he player’s own attributes. Therefore, we introduce the degree of cooperation of players into our model to continuousize
he player payoffs in this study. Within the degree of cooperation of players, the same strategy pair in the network will
ave different payoffs because the degree of cooperation of players between interactions is different. Moreover, in the
raditional network evolutionary game model, the probability of the strategy changes during the next step is determined
sing the player’s performance in the previous step. In other words, players are considered to be shortsighted and forgetful.
hen people make an important decision, they generally consider the current situation and their historical experience.
herefore, the influence of memory should be considered because historical memory is crucial in evolutionary games.
herefore, numerous studies have been conducted. For example, Liu et al. introduced a preferential parameter to describe
he nonlinear correlation between selection probability, strategy persistence, and the memory length of individuals into
volutionary games [36]. Shu et al. proposed a mechanism of conformity with memory, whose core lies on two facts [37].
hao et al. studied a memory-based weak PDG in interdependent networks [38]. Dong et al. studied a memory-based
HG on regular lattices [39]. Lu et al. investigated the influence of the memory effect on the evolution of cooperation in
spatial PDG [40].
Over the past few decades, researchers have noticed that profiteers and conformists are crucial in social dynamics [26].

layers learn the most successful strategies and choose the most popular strategies, and there are several conformists
n real life. For example, we have noticed that when consumers shop online, they tend to buy mass-market goods.
person’s point of view is often greatly influenced by most people around him or her. In addition, there is a lot of

esearch on conformists and great results have been achieved. For instance, Niu et al. explored the effects of the rational
onformity behavior on the evolution of cooperation in PDG [41]. Yang et al. investigated the propagation of cooperation
n a conformity-driven dynamic social network where an agent adjusts a social tie sometimes in accordance with a rival’s
trategy’s popularity [42]. Zhang et al. studied the effects of imitation, aspiration, and conformity-driven dynamics on
he evolution of cooperation in a square lattice with periodic boundary conditions [43]. Pi et al. investigated the effect of
onformists on the evolution of cooperation in multigames [44]. In a study [45], researchers studied the effect of different
roportions of various types of network conformists on the proportion of network cooperators.
In view of the aforementioned points, a new and practical model is proposed to discuss the evolution of cooperation,

here each player is located on the node of the network and is assigned different degrees of cooperation d to continuousize
he player’s payoffs, with the same memory strength c and the same size of memory length T to provide players with
emory features. We present a fully new decision-making mechanism and combine it with traditional strategy-updating

ules for players updating strategies. Different from previous works related to memory mechanisms [46], considering the
lose relationship between the time dimension and decision-making behavior, the new mechanism records the strategies
sed in the player’s history instead of, the payoffs gained by the player’s history. Furthermore, the noise impact on different
layers should be different, which is contrary to the fixed noise factor κ in the traditional Fermi function. Thus, we define
he difference in the degree of cooperation as the similarity between players and allow it to replace the traditional noise
actor κ , which is more in line with reality. Therefore, we propose two novel strategy-updating rules based on profiteers
nd conformists regarding the players’ memory mechanism. Using the selected strategy, the player plays the SG with
is/her immediate neighbors on square-lattice networks and small-world networks. We examine whether the historical
trategy memory mechanism can facilitate cooperation behaviors using different memory strengths, payoff parameters,
emory lengths, and conformist ratios. The results obtained via our simulations show that the cooperation behavior of

he network can be promoted by the memory strength, memory length, and conformist ratio over a large parameter area.
This study is organized as follows. In Section 2, we describe our model: players’ payoff calculation and strategy-

pdating rules for different types of players. In Section 3, we describe our simulation methods, report, and elaborate
ur results. Finally, we summarize the conclusion and describe the outlook in Section 4.

. Model

In this section, we mainly illustrate the details of our game model based on players with memory mechanisms, the
alculation of a player’s payoff, and strategy-updating rules based on profiteers and conformists.

.1. The game model and calculation of a player’s payoff

First, we briefly describe the original SG model. Consider two people driving in opposite directions on a windy and
nowy night and are blocked by a huge snowdrift. Both drivers can get out of the car to shovel or stay in the car, which we
all a cooperator (C) or a defector (D), respectively, under one negotiation. Suppose the cost of shoveling this snowdrift to
lear the road is q, and the benefit to each person of clearing the road is b, we have b > q. If both drivers choose to shovel
2
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he snowdrift (C), then they both gain benefit b of getting back home while sharing the labor q of shoveling, i.e., both get
ayoff b−q/2. If one driver shovels the snowdrift (C) while the other driver stays in the car (D), although both drivers can
o home, the defector escapes the labor and gets a perfect payoff b, whereas the payoff of the cooperator is b− q. If both
rivers choose to stay in the car and not shovel the snowdrift (D), they will still be trapped by the snowdrift and cannot
o home; therefore, their benefits are 0. Without losing generality, b − q/2 is usually set to 1 so that the evolutionary
ehavior of the SG can be investigated with a single parameter, r = q/2 = q/(2b− q). Therefore, the payoff matrix of the
G is expressed as follows:

M =
(

1 1− r
1+ r 0

)
(1)

here 0 < r ≤ 1 is a regulable parameter. Generally, cooperation will dominate when r → 0, and defection will dominate
hen r → 1.
Herein, we illustrate the evolutionary process of the memory-based SG. We assume that N players exist in a given

etwork, in which each node represents a player. In every round, each player in the evolutionary game can only choose
o be a cooperator (C) or a defector (D) at each strategy-updating step. Specifically, in this study, we make a more realistic
ssumption that each player can choose his/her strategy from a continuous set of strategies at the beginning. In detail,
ach player in the structured population can choose a strategy value of d, which means the degree of propensity to
ooperate and falls within the interval [0, 1]. Every individual is randomly assigned a strategy value of d, which follows
uniform distribution and determines the player’s strategy. In particular, we specify that a higher value of d means a
igher cooperativeness level in the spatial population. Notably, d = 1 and d = 0 correspond to fully cooperative and
ully defective strategies, respectively. Furthermore, 0.5 < d < 1 indicates a predominantly cooperative strategy and
< d < 0.5 represents a predominantly defective strategy.
Without losing generality, we study the pairwise evolutionary game in this study. In a pairwise interaction, let player

and player j having continuous strategies di and dj play a game, respectively. Then, if they are both cooperators, they
et didj as the benefit of mutual cooperation. If player i is a defector and player j is a cooperator, then player i is given
1+ r)(1− di)dj and player j obtains 1− r . Moreover, if the two players are both defectors, they get nothing. Each player
lays the game with all his/her neighbors to acquire his/her payoff Π through the aforementioned rules. Thus, the payoff
f player i can be given as follows:

Πi =

{ ∑
j∈Ω,sj=C

didj +
∑

j∈Ω,sj=D
(1− r), if si = C∑

j∈Ω,sj=C
(1+ r) (1− di) dj, if si = D (2)

here Ω indicates the neighbor player set of player i and si denotes the strategy of player i.

.2. Strategy evolution

In this subsection, we describe the strategy-updating rules based on different types of players. In the proposed model,
e consider that there are two types of players: profiteers and conformists, which are evenly mixed in the network. The
layers synchronously update their strategy, such that all players’ strategies will be updated during each round of the
ame.
In reality, players are not always the same and would update their strategies via different methods after playing a

ound of the game with their neighbors, which affords adopting different strategy-updating rules. Therefore, we define
wo different player types: profiteers and conformists. Profiteers with memory mechanisms are more inclined to choose
he strategies of high-payoff players, i.e., a player i (profiteer) adopts the strategy sy from player y (randomly chosen from
eighbors) with a probability that depends upon the payoff difference and the set of strategies he/she has used in the
ast is expressed as follows:

P(sx ← sy) = c

∑T
i=1 δ

(
Sx,T (i), sy

)
T

+ (1− c)
1

1+ e(Πx−Πy)/|dx−dy|
(3)

where c indicates memory strength, Sx,T represents player x′s strategy in the past T game rounds, and δ
(
Sx,T (i), sy

)
can

be denoted as follows:

δ
(
Sx,T (i), sy

)
=

{
1, Sx,T (i) = sy
0, Sx,T (i) ̸= sy

(4)

where Eq. (4) is a Dirac function. The player’s memory length will be regarded as t when t < T because the evolution
time at this point has not yet reached T .

We consider Eq. (3) as the memory-based profiteer-driven strategy-updating rule. Additionally, the degree of propen-
sity to cooperate dy of player y will be adopted by player x when player x has adopted the strategy of player
y.
3
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Fig. 1. An example of the model. This figure shows an evolutionary game process with conformists and profiteers considering the memory mechanism,
here the blue and red nodes represent conformists and profiteers, respectively, whereas C and D represent cooperators and defectors, respectively.
t t = 5, profiteer V3 adopts strategy C from player V4 (randomly chosen from neighbors) with the probability given by Eq. (3). Because the
trategies V3 used in the previous five steps (the memory of V3) are C, D, C, C, and D, the probability that the strategy of V3 changes to C in the
next step is P = c × 3

5 + (1− c)× 1

1+e
Π3−Π4
|d3−d4 |

, where c indicates memory strength, di represents the degree of propensity to cooperate of player i,

and Πi denotes the payoff of player i. Conformist V1 changes his/her current strategy with the probability given by Eq. (5). Because the strategies
V1 used in the previous five steps (the memory of V1) are D, D, C, C, and C, the probability that the strategy of V1 changes to D in the next step is
= c × 2

5 + (1− c)× 1

1+e
1−1
|d1−d2 |

. All players will update their strategies at each step based on the player’s own type.

Conformists with memory mechanisms are more likely to select the strategies that have a high number of users in the
neighborhood, namely player i (conformist) changes his/her strategy with a probability that depends upon the number
of strategies used among his/her neighbors and the set of strategies he/she has used in the past is given as follows:

P(sxchange) = c

∑T
i=1 δ

(
Sx,T (i), sy

)
T

+ (1− c)
1

1+ e(Nsx−kh)/|dx−dy|
(5)

where Nsx is the number of players adopting strategy sx within the interaction range of player x, kh is one-half the degree
of player x, and sy is the anti-strategy of sx at this time. Analogously, we propose the memory-based conformist-driven
strategy-updating rule in Eq. (5). In addition, the degree of propensity to cooperate dx of player x will change to 1 − dx
when player x has changed his/her strategy.

This ends the modeling section. In brief, we first introduced our SG model, then described the calculation of players’
payoffs after the introduction of the degree of player cooperation and finally proposed two different strategy-updating
rules based on profiteers and conformists with memory mechanisms to overcome the shortcomings reported in some
previous researches. Fig. 1 depicts an example of our model. In the following section, we will illustrate the simulation
methods and present our results.

3. Methods and simulation results

In this section, for confirming the previous theory, we describe the simulation methods and present the results obtained
through simulations along with their analyses. We analyze the evolution of cooperation frequency over time under
different parameter pairs; then, observe the effects of memory strength and payoff parameter on cooperation frequency.
Subsequently, we study the influences of memory strength, memory length, and conformist ratio on the cooperation
frequency and discuss the strategy distribution on the square-lattice network at the micro level during the evolution
process. Finally, we investigate the influence of network size on cooperation frequency to validate the robustness of our
model.

3.1. Methods

At the beginning of each simulation, unless otherwise specified, N = 1024 players are embedded into the WS network
or a 32 × 32 square-lattice network, where WS is generated by regular graphs and randomized reconnection, which
4
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Fig. 2. Plots of cooperation frequency against evolutionary time. WS is generated by regular graphs and randomized reconnection, where the
parameters are set as the number of players N = 104 , the random reconnection probability p = 0.15, and K = 4, which indicates that each player
is connected to two players (his/her left and right neighbors). RE is generated by a square-lattice network with 100 × 100 players. The parameter
pair (c , r) is set to (0.3, 0.4), (0.3, 0.6), and (0.5, 0.6), with different last and first numbers for contrast and the memory length T is restricted to
5. Subplots (a) and (b) show the cooperation frequency against evolutionary time on the WS network and regular network, respectively, where the
x-axis and y-axis are set as the time and the cooperation frequency, respectively. Each x-axis range is set as [0, 104], and each y-axis range is set
as [0.4, 1]. We observe each network until t = 104 so that the cooperation frequency becomes stable. Regardless of the parameter pair (c , r), the
cooperation frequency increases with evolutionary time and eventually reaches a stable value.

was proposed by Watts and Strogatz in 1998 [47]. Initially, a cyclic nearest-neighbor coupling network containing N
nodes is given, where each node is connected to K/2 nodes (its left and right neighbors), and K is an even number.
Then, each of the original edges in the network is reconnected randomly with probability p, i.e., one endpoint of each
edge remains unchanged and the other endpoint is considered to be a randomly chosen node in the network, which
specifies that there must be no multiple edges or self-loops. To produce the WS network, we mainly employ the function
watts_strogatz_graph() of networkx in Python. The initial type of player is randomly selected from the space T = {P, C},
where P, C denotes the profiteer and the conformist respectively, and the initial degree of propensity to cooperate of
player d is uniformly distributed in [0, 1], i.e., the initial strategy of the player is randomly selected from the space S =
{C, D}, where C, D indicates the cooperator and the defector, respectively. Furthermore, a strategy update is implemented
through the roulette algorithm. In detail, there is a probability p for each player to imitate the strategy and degree of
propensity to cooperate of neighbor player y (if the player is a profiteer, the probability p is calculated using Eq. (3)) or
change his/her current strategy and degree of propensity to cooperate (if the player is a conformist, the probability p is
calculated by Eq. (5)). We generate a random number that follows a uniform distribution between [0, 1] and then compare
it to probability p. If it is larger than p, the aforementioned behavior will not occur; otherwise, it will. In this study, we
implement the evolution of cooperation in a simulation with a length T = 10000 steps. Moreover, to avoid additional
disturbances, the final results were averaged for 10 independent simulations for each set of parameter values to ensure
a suitable accuracy.

3.2. Evolution of cooperation frequency over time

For a population, the cooperation level is one of the most concerning indicators for people and it is commonly
characterized via cooperation frequency fc , denoting the fraction of cooperators. Therefore, to explore the evolutionary
relationship of cooperation frequency fc with respect to time t under different memory strengths and payoff parameters,
we must control three parameters: c , r , and t , where c is the memory strength of player, r is the parameter of our game
model (as shown in Eq. (1)) and t is set as a large number to obtain stationary results. In the following simulation, we
select a memory length of T = 5 and three pairs of (c , r): (0.3, 0.4), (0.3, 0.6), and (0.5, 0.6), with different last and first
numbers for contrast to investigate the evolution of cooperation frequency as time progresses.

For better stationary results by acquiring data for a sufficiently long time, we consider t be 104 and record the
cooperation frequency of each parameter pair (c , r) as time progresses in a half-log coordinate. We use the half-log
coordinate to better illustrate the ascent stage and the stationary process of the plots. The results of cooperation frequency
f varying with time t are shown in Fig. 2.
c

5
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Fig. 3. Plots of cooperation frequency against payoff parameter. WS is generated by regular graphs and randomized reconnection, where the
arameters are set as the number of players N = 1024, the random reconnection probability p = 0.15, and K = 4, which indicates that each
layer is connected to two players (his/her left and right neighbors). RE is generated by a square-lattice network with 32 × 32 players. We set the
emory strength c = 0, 0.2, 0.4, 0.6, 0.8, and 1, and the memory length T is restricted to 5 in both subplots. Setting the evolution time t = 104 ,

we obtain each cooperation frequency by averaging the cooperators proportion in the last 1000 rounds, and each data point is averaged using
the cooperation frequencies of 10 independent simulations. Subplots (a) and (b) show the cooperation frequency against payoff parameter under
different memory strengths on the WS network and regular network, respectively, where the x-axis and y-axis are set as the payoff parameter and
the cooperation frequency, respectively. Each x-axis range is set as [0.1, 1], and each y-axis range is set as [0, 1]. We observe each network until
t = 104 so that the cooperation frequency becomes stable. Except for c = 1, both networks exhibit that a larger value of r leads to a smaller
cooperation frequency.

As we can clearly see, the cooperation frequency fc in the network will become increasingly higher during the evolution
with different parameter pairs (c , r). Furthermore, the results show that the stationarity of the cooperation frequency
exists, all three parameter pairs (c , r) finally approach stationarity after a short time (approximately t = 102) and they
all steadily float within bounds. In detail, with the same c = 0.3, r = 0.4 marked by blue circles approaches a higher
alue and fluctuates considerably less than r = 0.6 marked by black triangles. After t = 102, with the same r = 0.6,

c = 0.5 marked by red squares approaches a higher value than c = 0.3 marked by black triangles. In other words, the
higher c and lower r yield a higher stationary value fc . Furthermore, Figs. 2(a) and 2(b) show that the stationary value of
cooperation frequency is higher on the WS network than that on the RE network except for the parameter pair (c , r) =
(0.3, 0.4). In addition, although the cooperation frequency evolution curves of (c , r) = (0.5, 0.6) and (c , r) = (0.3, 0.6) on
the WS and RE networks are very similar in the near future, the cooperation frequency of (c , r) = (0.5, 0.6) is considerably
greater than that of (c , r) = (0.3, 0.6), appearing earlier on the RE network than that on the WS network.

Subsequently, we analyze the possible reasons for the results of Fig. 2. As is well known, the cooperators will have
a less payoff when r increases, and defection might be a better strategy. Thus, we deduce that a smaller r will afford
a higher frequency of cooperation under the condition of the same c. Fig. 2 depicts that the effect of memory strength
c is remarkable. The cooperation frequency fc will be improved even if the memory strength c only increases slightly.
Thus, the introduction of the memory effect into the SG is beneficial to the emergence of cooperation in the WS and
square-lattice networks.

3.3. Effect of memory strength and payoff parameter on the cooperation frequency

As we previously described, memory strength c will have an influence on the probability that the player will update
his/her strategy and affect cooperation behavior. To observe the cooperation frequency at equilibrium, the cooperation
frequency fc as a function of payoff parameter r under different memory strengths c is given in Fig. 3.

When c = 0, it means players only focus on the payoff difference or number of strategies, which is called being
memory free. As shown in both Figs. 3(a) and 3(b), cooperators will dominate the network when payoff parameter r is
small, except when c = 1, which will be described separately later in this study. Except for the situation when c = 1, the
frequency of cooperation fc will decrease as payoff parameter r increases and the threshold r for the presence of clear
defectors in the network increases as memory strength c grows, which can be illustrated by fixing fc = 0.9. The r of c = 0
< the r of c = 0.2 < the r of c = 0.4 < the r of c = 0.6 < the r of c = 0.8. Although defectors will appear in the network,
the frequency of cooperation can be enhanced by increasing the memory strength when the payoff parameter is not very
6
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Fig. 4. Plots of cooperation frequency against memory strength. WS is generated by regular graphs and randomized reconnection, where the
parameters are set as the number of players N = 1024, the random reconnection probability p = 0.15, and K = 4, which indicates that each
layer is connected to 2 players (his/her left and right neighbors). RE is generated by a square lattice network with 32 × 32 players. We set the
ayoff parameter r = 0.4, 0.6, and 0.8, and the memory length T is restricted to 5 in both subplots. Setting the evolution time t = 104 , we obtain
ach cooperation frequency by averaging the cooperators proportion in the last 1000 rounds, and each data point is averaged using the cooperation
requencies of 10 independent simulations. Subplots (a) and (b) show the cooperation frequency against memory strength under different payoff
arameters on the WS network and regular network, respectively, where the x-axis and y-axis are set as the memory strength and the cooperation
requency, respectively. Each x-axis range is set as [0, 0.9], and each y-axis range is set as [0, 1]. We observe each network until t = 104 so that
he cooperation frequency becomes stable. For r = 0.8, a slow overall decreasing tendency of cooperation frequency with increasing c is shown on
oth networks. For r = 0.4 and r = 0.6, both networks show that a larger value of c leads to a larger cooperation frequency.

arge (r < 0.6). However, the phenomenon will be reversed when r ≥ 0.8, in which the frequency of cooperation will
e inhibited upon increasing the memory strength. There is a difference between Figs. 3(a) and 3(b), where for c = 0,
layers are memoryless and the threshold for the emergence of defectors is apparently higher in the WS network than
hat in the RE network. Subsequently, we will give a separate explanation for c = 1. When c = 1, the probability p in
qs. (3) and (5) that imitate neighbor player y’s strategy or alter current strategy will change to p =

∑T
i=1 δ(Sx,T (i),sy)

T , which
means that there is no difference between the profiteers and conformists and they no longer consider the difference in
payoffs or the number of strategies among their neighbors. Furthermore, they are only concerned about the strategy they
have used in the past T rounds at this point (i.e., the player’s strategy will remain the same throughout the evolutionary
process). Because the player’s strategy at the initial moment is randomly selected from the state space S = {C, D}, the
cooperation frequency will gently fluctuate around 0.5 as the payoff parameter changes.

Next, to better discover the relationship between cooperation frequency and memory strength, we show the influence
of memory strength on the cooperation frequency under different payoff parameters in Fig. 4, where the x-axis is set as c
and the y-axis is set as fc . Each cooperation frequency is obtained by averaging the cooperation proportion over the last
1000 rounds (we observe each cooperation density until t = 104 so that the proportion of cooperators in the network
becomes stable), and each data point is averaged using the cooperation frequencies of 10 independent simulations. In
both Figs. 4(a) and 4(b), the frequency of cooperation is enhanced by increasing c and eventually stabilizes near 1 when
r = 0.4 and r = 0.6. For r = 0.8, there is an overall tendency for the frequency of cooperation to be impeded as c
ncreases but cooperators are not extinct and a few cooperators remain in the network. The frequency of cooperation
n the WS network has always been higher than that on the RE network. The aforementioned results coincide with the
esults presented in Fig. 3, which validates our model from another perspective.

.4. Effect of memory strength and memory length on the cooperation frequency

In this simulation, we focus on the relationship between the cooperation frequency and the memory length. By fixing
he payoff parameter r = 0.6, setting the x-axis as the memory length T and y-axis as the cooperation frequency fc , we
resent the function of cooperation frequency and memory length T ∈ [0, 36] in Fig. 5. We observe each cooperation
ensity until t = 104, where each cooperation frequency is obtained by averaging the cooperators proportion over the
ast 1000 rounds, and each data point is averaged using the cooperation frequencies of over 10 independent realizations.
or c = 0, the probability p in Eqs. (3) and (5) that imitate neighbor player y’s strategy or alter current strategy will
7
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Fig. 5. Plots of cooperation frequency against memory length. WS is generated by regular graphs and randomized reconnection, where the parameters
are set as the number of players N = 1024, the random reconnection probability p = 0.15, and K = 4, which indicates that each player is connected
to two players (his/her left and right neighbors). RE is generated by a square-lattice network with 32 × 32 players. We set the memory strength
c = 0.2, 0.4, 0.6, and 0.8, and the payoff parameter r is restricted to 0.6 in both subplots. Setting the evolution time t = 104 , we obtain each
ooperation frequency by averaging the cooperators proportion over the last 1000 rounds and each data point is averaged using the cooperation
requencies of 10 independent simulations. Subplots (a) and (b) show the cooperation frequency against memory length under different memory
trengths on the WS network and regular network, respectively, where the x-axis and y-axis are set as the memory length and the cooperation
requency, respectively. Each x-axis range is set as [0, 36], and each y-axis range is set as [0, 1]. We observe each network until t = 104 so that
the cooperation frequency becomes stable. For the larger c , the cooperation frequency can be enhanced by increasing memory length, which can be
demonstrated from both subplots (a) and (b).

become p = 1

1+e(Πx−Πy)/|dx−dy|
and p = 1

1+e(Nsx−kh)/|dx−dy|
, which are independent of T . For c = 1, the aforementioned

equation will turn into p =
∑T

i=1 δ(Sx,T (i),sy)
T and the situation we discussed before will occur again, namely, the player’s

strategy will remain constant during the evolution process. For that reason, we do not set c to 0 or 1, which would become
eaningless; however, it is set to 0.2, 0.4, 0.6, and 0.8 instead.
Based on the relationship between the cooperation frequency and the memory length on the WS network, as is shown

n Fig. 5(a), the degree of fluctuation of fc is large by changing T when c is small, which can be seen from c = 0.2 marked
y blue circles. Moreover, fc will be improved with the increasing T and finally reach a stable value when c is not too
mall, which can be seen from c = 0.4 marked by black triangles, c = 0.6 marked by red squares, and c = 0.8 marked
y green diamonds. In addition, the fc corresponding to c = 0.8 and c = 0.6 keeps increasing as T increases and the fc
orresponding to c = 0.8 is always higher than that corresponding to c = 0.6 when T < 15. However, both fc curves
each a stable value when T > 15 and they are almost identical. In other words, we can eliminate differences in the effect
f different c on fc by increasing T .
Then, we present the relationship between cooperation frequency and memory length on the RE network in Fig. 5(b),

here we can obtain similar results to those on the WS network for c = 0.6 and c = 0.8, which can be stated as fc
rowing with T and then reaching a stable value. For c = 0.4, although the general trend shows that fc is increasing
ith T , it does not reach a stable value and there are fluctuations in the curve. Moreover, the curve for c = 0.2 has large

luctuations, similar to the WS network. Furthermore, comparing Fig. 5(a) with Fig. 5(b), we can see that the frequency
f cooperation is higher on the WS network for c = 0.2 and c = 0.4 than that on the RE network, which can indicate
hat the SG on the WS network promotes cooperation more than that on the RE network in the aforementioned case.

.5. The evolutionary snapshots of cooperator and defector

To further discuss the memory effect on the cooperation frequency in the square-lattice network, snapshots of
ooperators and defectors are given in this section. As shown in Fig. 6, there are snapshots of cooperators and defectors
ith three pairs of memory strength c and payoff parameter r , which are (c, r) = (0.3, 0.4), (c, r) = (0.3, 0.6), and
c, r) = (0.5, 0.6), with different last and first numbers for contrast and the memory length T is fixed 5. Fig. 6 visualizes
he evolutionary game in the network and is more understandable. In addition, to explain the frequency of cooperation
ith different parameter pairs (c , r) intuitively, snapshots show how cooperators emerge with time when the memory
trength c and payoff parameter r change. In detail, the smaller r indicates a higher the cooperation frequency at the
8
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Fig. 6. Characteristic snapshots for different parameter pairs (c , r). Snapshots of equilibrium of cooperators (green) and defectors (red) with three
ypical combinations of memory strength c , payoff parameter r , and a fixed memory length T = 5. The square-lattice network size is set to
= 100× 100. 50% of cooperators and defectors randomly distribute on networks in the initial state. Each site corresponds to a player. From top

o bottom, the parameter pairs (c , r) are set as (0.3, 0.4), (0.3, 0.6), and (0.5, 0.6), respectively. From left to right the time step is fixed to be t =
, 100, and 1000. The snapshots on the square-lattice network show the emergence of a proliferation of cooperators, which is more intuitive and
nderstandable.

ame time with the same c , as evidenced in Fig. 6(2) and Fig. 6(5), Fig. 6(3) and Fig. 6(6). Moreover, when c increases
ith the same r , a higher c shows a higher cooperation level in the network at the same time, which can be clearly seen

rom Fig. 6(6) and Fig. 6(9). Furthermore, for each set of parameter pairs (c , r), looking from left to right, we can find that
ooperators emerge and prosper by a number of clusters as time progresses.

.6. Effect of conformist ratio on the cooperation frequency under different memory strengths

In the above studies, the initial type of player is randomly selected from the space T = {P, C}, such that the ratio
f conformists is almost equal to 0.5. We will next investigate the effect of different ratios of conformists on network
ooperation behavior, where the ratio of conformists in the network is denoted as ρ. By setting the x-axis as ρ and the
-axis as fc , we present the plots of cooperation frequency against conformist ratio under different memory strengths
n Fig. 7. Each cooperation frequency is obtained by averaging the cooperators proportion over the last 1000 rounds,
nd each data point is averaged using the cooperation frequencies of 10 independent simulations. In Figs. 7(a) and 7(b),
e determine that the proportion of cooperation on the WS network increases with increasing numbers of conformists
hen ρ is less than 0.95, and the proportion of cooperation on the RE network also increases with increasing numbers of
onformists when ρ is less than 0.9. A larger c will lead to a smaller ρ, which maximizes the cooperation frequency in the
etwork, indirectly suggesting that memory strength has a positive effect on the emergence of cooperators. In addition,
he ratio of cooperators rapidly declines to 0 as the proportion of conformists rises to 0.95 and continues to rise on the
S network when c ≥ 0.4, and the ratio of cooperators rapidly declines as the proportion of conformists rises to 0.9 and

ontinues to rise on the RE network when c ≥ 0.6. The proportion of cooperators in the network is approximately 0.5
when c = 0.8 and ρ = 1, which is different from the WS network. Therefore, the cooperation frequency can be controlled
by improving the number of conformists when the ratio of conformists is less than 0.9. The aforementioned results are
in agreement with those of the previous studies.

3.7. Effect of network size on the cooperation frequency

Finally, we investigate the effect of network size on the cooperation frequency under different pairs of parameters
(c, r) to verify the robustness of our model. We select a memory length of T = 5 and three couples of (c, r), and they
are (0.3, 0.4), (0.3, 0.6), and (0.5, 0.6), with different last and first numbers for contrast. We observe each cooperation
frequency until t = 5000, since the frequency of cooperation in the network has reached stability at this time, which can
be seen from the simulation results in Fig. 2. From Figs. 8(a) and 8(b), we can obtain that the change in the cooperation
frequency with the variation of network size is small for both the WS network and the RE network, while the proportion of
cooperators on the RE network fluctuates to a greater extent than that of the WS network. Besides, regardless of network
size and network type, with the same c = 0.3, the r = 0.4 marked by blue circles approaches a higher cooperation
frequency and fluctuates less extensively than the r = 0.6 marked by black triangles, and with the same r = 0.6, the
c = 0.5 marked by red squares approaches a higher cooperation frequency than the c = 0.3 marked by black triangles. In
9
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Fig. 7. Plots of cooperation frequency against conformist ratio. WS is generated by regular graphs and randomized reconnection, where the parameters
are set as the number of players N = 1024, the random reconnection probability p = 0.15, and K = 4, which indicates that each player is connected
to two players (his/her left and right neighbors). RE is generated by a square-lattice network with 32 × 32 players. We set the memory strength
c = 0.2, 0.4, 0.6, and 0.8, the payoff parameter r is restricted to 0.6, and the memory length T is restricted to 5 in both subplots. Setting the
volution time t = 104 , we obtain each cooperation frequency by averaging the cooperators proportion over the last 1000 rounds, and each data
oint is averaged using the cooperation frequencies of 10 independent simulations. Subplots (a) and (b) show the cooperation frequency against
onformist ratio under different memory strengths on the WS network and regular network, respectively, where the x-axis and y-axis are set as the
onformist ratio and the cooperation frequency, respectively. Each x-axis range is set as [0, 1], and each y-axis range is set as [0, 1]. We observe each
etwork until t = 104 so that the cooperation frequency becomes stable. The increase of conformists in the network will promote the emergence of
ooperation when the ratio of conformists is less than 0.9. Further, the larger c will lead to a smaller ρ, which maximizes the cooperation frequency
n the network.

Fig. 8. Plots of cooperation frequency against network size. WS is generated by regular graphs and randomized reconnection, where the parameters
are set as the random reconnection probability p = 0.15, and K = 4, which indicates that each player is connected to two players (his/her left and
right neighbors). RE is generated by a square-lattice network. The parameter pair (c , r) is set to (0.3, 0.4), (0.3, 0.6), and (0.5, 0.6), with different last
nd first numbers for contrast, and the memory length T is restricted to 5. Subplots (a) and (b) show the cooperation frequency against network
ize on the WS network and regular network, respectively, where the x-axis and y-axis are set as the system size and the cooperation frequency,
espectively. Each x-axis range is set as [200, 1600], and each y-axis range is set as [0.2, 1]. We observe each network until t = 5000 so that the
ooperation frequency becomes stable, and each cooperation frequency is obtained by averaging the cooperators proportion over the last 500 rounds.
egardless of the parameter pair (c , r), the cooperation frequency is stable around a certain value as the network size changes.
10
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ther words, the higher c and lower r yield a higher fc , which is consistent with our analysis above. Furthermore, it can
e clearly seen that the cooperation frequency is higher on the WS network than on the RE network for the parameter
air (c , r) = (0.3, 0.6). Therefore, we can conclude that the network size has almost no effect on our model, which verifies
ts excellent robustness.

. Conclusion and outlook

In this study, we have studied the memory-based SG with profiteers and conformists on networks, including square-
attice networks and small-world networks. Primarily, we give players the property of degree of cooperation, through
hich we continuousize the payoff when the player plays the SG with his/her neighbors and use it as a measure of
imilarity between players. Then, we propose two new strategy-updating rules based on profiteers and conformists
y incorporating the player’s memory mechanism, similarity, and the traditional Fermi strategy-updating rule. In the
imulation, the parameter r in the payoff matrix, the conformist ratio ρ, the parameter c , and T in the strategy-updating
rules of players, which indicate that the player has a memory mechanism, are investigated to discover their relationships
with the final frequency of cooperation fc , and the robustness of our model is validated. In particular, compared to the
player without memory, who has less historical reference information, tends to be shortsighted and chooses a defection
strategy in one round that seems to bring greater payoffs, the frequency of cooperation can be enhanced by introducing
the memory mechanism. In detail, we can promote cooperation behavior by increasing the memory strength of players.
However, this phenomenon will be reversed when r is larger than 0.8, i.e., a smaller memory strength will afford a higher
cooperation frequency in this case. In addition, the level of cooperation can be enhanced by improving the player’s memory
length. This result is both intuitive as well as easily understandable in terms of the real world because people with more
vision tend to be more concerned with long-term benefits, while people with narrow vision only care about current
benefits, and cooperation is the strategy that can bring the highest returns for the whole network. Furthermore, the
implications of different ratios of conformists on network cooperation behavior have been studied, from which we derive
that the cooperation frequency can be facilitated by improving the number of conformists when the ratio of conformists is
less than 0.9. In the end, we conduct simulations on different sizes of networks and find that network size has almost no
effect on the cooperation frequency, which illustrates the robustness of the model we proposed. Therefore, by introducing
a memory mechanism, players can become high visionaries, which boost the emergence of cooperation in the network.

In our work, we initially generate the degree of cooperation by making it follow a uniform distribution of [0, 1].
owever, different distribution functions, such as the normal distribution, may result in different results. Furthermore,
o study the susceptibility of the frequency of cooperation, various game models, including PDGs, public goods games,
nd SHGs, can be considered. The ratio of conformists we have studied is fixed in the evolutionary process, whereas the
onformists and the profiteers learning from each other in the evolutionary process may yield interesting results, which
ill be the focus of our future work. Furthermore, our strategy-updating rules are a combination of traditional Fermi

unctions and the combination between different rules of strategy-updating, such as best-take-over, replicator dynamics,
nd Moran process, may afford new discoveries. Eventually, we hope that our work will contribute to the relative study
f evolutionary games with conformists and memory effects in the near future.
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