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A B S T R A C T

In light of the dynamic interaction between epidemic spreading and behavior responses, the development of
a comprehensive epidemic model is both crucial and challenging. In this paper, based on the evolutionary
game theory, we investigate the co-evolution of adherence strategy decision-making and epidemic spreading,
with a particular focus on the role of conformity. Considering individual self-determination and population
imitation, we analyze two distinct strategy updating rules: profit-driven decision-making and conformity-driven
decision-making. We also account for the influence of neighbors’ strategies on epidemic spread rates. Extensive
simulations are conducted to analyze epidemic phase transitions and the distribution of infected individuals
at the stationary state of the epidemic. By analyzing the adoption of strategies under different scenarios of
conformity fractions, we find that conformity widens the disparity between different strategies over time. In
conclusion, our results demonstrate that conformity promotes the adherence strategy, which helps reduce the
size of the epidemic.
1. Introduction

In the context of recurrent epidemics, the decisions we make re-
garding our behavior can significantly impact the course of disease
transmission. In response to the threat of infection, individuals may
adopt behaviors that seek to control the spread of disease, such as
self-protection [1], volunteer vaccination [2], social distancing [3],
quarantine [4], and stay-at-home measures [5], which can reduce the
risk of infection. The severity of an epidemic also impacts our decision-
making in response, which is frequently neglected in most of the
researches on the behavior during the epidemic. For instance, when
the count of infected individuals is low, individuals may prioritize
their own costs and benefits over the infection due to the losses in
economic income, social opportunities, and convenience in daily life.
Therefore, during the early stages of an outbreak or when the spread
of the disease is not severe, individuals are not willing to adhere
to prevention and control measures to preserve their daily routines.
However, as the infection ratio rises, a larger fraction of the population
tends to adhere strictly to guidelines and prioritize self-protection [6].
This dynamic can be understood through the lens of strategic decision-
making principles explored in game theory, where players carefully
balance personal payoff with the influence of their peers [7]. The effi-
cacy of game-theoretic models in simulating complex decision-making
mechanisms in the context of epidemics has been demonstrated by
research findings [8].

∗ Corresponding author.
E-mail address: myfeng@swu.edu.cn (M. Feng).

The investigation of game theory on complex networks extends to
the coupling of transmission dynamics and human decision-making
processes in various fields [9,10]. As in many other areas of social
life, the COVID-19 pandemic poses a public goods dilemma, e.g., if the
majority of people cooperate, the larger group can defeat the virus [11].
Additionally, in the context of epidemic propagation, vaccination is
modeled as a social public-goods dilemma among individuals consid-
ered as players [12]. In addition, a two-layered network paradigm has
been devised to study the effect of information spreading [13]. Apart
from the social distancing game [14], information about the current
disease prevalence is assessed before decisions are made [15] as part
of pay-off construction [16]. Typically, strategy updates involve players
weighing their own fitness against that of their neighbors [17], thus
considering different updating frequencies [18] and rules such as both
learnings [19] and self-profit influencing vaccination behavior [20].
Similarly to rumor propagation, where profitability and herd psychol-
ogy are considered, evolutionary game theory is used to construct the
driving force mechanism of information [21]. To cover a comprehen-
sive range of variables, a unified framework has been constructed to
account for both long-term [8] and irrational decision-making pro-
cesses [22]. Despite these advances, there is a need for more concise
models that can effectively capture the dynamic interplay between the
adoption of behaviors and the propagation of epidemics.
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The field of game-theoretic decision-making in the dynamics of
infectious disease has been extensively examined, employing stochas-
tic methods on networks to capture the randomness and variability
inherent in these processes. Initially, research concentrated on deter-
ministic models with self-learning game settings, primarily focusing
on mass human behavior. However, these early deterministic models,
such as the compartment model, still fail to account for the hetero-
geneity of stochastic contacts among individuals [23]. To address the
issue, more sophisticated models incorporate networks into epidemic
modeling in order to capture different contact patterns [24] since
networks are widely studied (e.g. random network [25], small-world
network [26], scale-free network [27], multilayer network [28], high-
order network [1], etc.). A graph-coupled hidden Markov model has
been proposed for the study of stochastic transmission at the individual
level [29], while the micro Markov Chain approach is used to derive the
outbreak threshold of epidemics [28]. The compound Poisson process
is also employed to model the epidemic progression [30]. With the
introduction of queueing theory, the healthcare queueing system was
optimized to minimize the infection rate [31]. An open Markov queue-
ing system is employed to model the stochasticity of state transition
in SIRS models [32]. On the other hand, non-repeated self-learning
population games were widely studied in the early years. These models
consider each individual to be perfectly rational, with complete infor-
mation about the current epidemic prevalence and other individual’s
behaviors [33]. Another set of studies utilizes imitation to connect
decision-making to a learning process that encompasses not only indi-
viduals but the entire population. For example, conformity-motivated
susceptible individuals are influenced by both their neighbors and
the population, illustrated by deterministic differential equations [20].
Based on Markov processes, the game transition is introduced to the
game among network individuals [34]. Furthermore, myopic Markov
perfect equilibrium is solved on a stochastic disease game to capture
the self-interests of individuals [35].

The complex dynamics of decision-making are frequently observed
in real-world epidemic transmission scenarios. However, existing dis-
ease models often inadequately capture these complexities [36]. The
theoretical framework that thoroughly explores the interaction between
these two aspects is significantly absent: the impact of behavioral pat-
terns on disease spreading, and conversely, how disease transmission
dynamics influence individual decision-making processes. To address
these shortcomings, our study introduces a game-theoretic framework
that integrates considerations of both individual self-determination and
conformity-driven majority decisions. In particular, it considers the
influence of both the conformity-driven decision-making process and
the individual’s own payoff and information. Moreover, the strategies
selected by neighbors in turn influence the rate of epidemic spreading.
The model emphasizes the significance of incorporating behavioral dy-
namics and social influences into epidemic modeling and intervention
strategies.

The paper is structured as follows: In Section 2, we propose an epi-
demic spreading model coupled with the adherence strategy updating
process. In Section 3, simulations are conducted to observe the effect of
different system parameters on the epidemic size and analyze the role
of conformity in strategy updating and epidemic spread. In Section 4, a
summary of our findings and an outline of future work are concluded.

2. Adherence strategy in epidemic spread based on evolutionary
game theory

In this paper, we introduce a novel network model that integrates
two interrelated subprocesses: the propagation of an epidemic and the
evolution of strategy responses. To facilitate a deeper understanding of
epidemic propagation dynamics, we first elaborate on the formulation
of the interactive payoffs between epidemic transmission and strategy
selection by individuals, which offers a novel perspective on the inves-
tigation of epidemic dynamics. Then, we analyze the influence of the
2

strategy on the rate of the epidemic spreading.
In order to illustrate the state and strategy of each individual within
the network, we define every individual 𝑖 by a two-dimensional stochas-
tic process

{

𝑋𝑖(𝑡), 𝑌𝑖(𝑡)
}

, which presents the social behavior and health
tate of individual 𝑖 at the discrete time 𝑡, respectively. More precisely,
he social behavior of individual 𝑖 is characterized by the stochastic
rocess 𝑋𝑖(𝑡) with a state space  ∈ {0, 1}, indicating whether individ-
al 𝑖 adheres to epidemic-prevention rules. In particular, the adherence
trategy, indicated by 𝑋𝑖(𝑡) = 1, signifies compliance with preventive
nd management measures, such as self-isolation. Conversely, the non-
dherence strategy, demonstrated by behaviors like discarding these
uidelines, is denoted by 𝑋𝑖(𝑡) = 0. The health state 𝑌𝑖(𝑡) assumes values
rom a discrete set of compartments denoted by . For example, choos-
ng  ∈ {𝑆, 𝐼} allows us to model the susceptible-infected-susceptible
SIS) epidemic process effectively.

.1. Profit-driven strategy updating rule

In the context of an epidemic, the epidemic spreading within a
etwork is largely influenced by whether individuals and their neigh-
ors adhere to defense and control measures or not. The decision of
ach individual to comply with the rules depends on factors, including
heir own personal payoff and the size of the epidemic. Similarly to
ow players update their strategies in game theory, individuals tend
o choose a particular strategy that offers a higher payoff. In a similar
anner to how social factors and payoffs influence strategy selection,

hey also play a pivotal role in the spreading of an epidemic.
Therefore, the game theory provides an effective framework for

odeling the spreading of epidemics. By representing individuals as
ertices and their action choices as edges in a network, we can illustrate
he process of updating strategies during an epidemic. Analogously,
ach individual within the network acts as a player in an evolutionary
ame, with the two possible actions for each susceptible individual,
amely adhering or not adhering to control measures, corresponding
o two distinct strategies.

The game strategy and fitness are governed by a two-player-two-
trategy game. To begin, we establish the individuals’ payoff matrix 𝑃
s follows:

=
(

𝐴 𝑁
𝐴 𝑢𝑎𝑎 𝑢𝑛𝑎 − 𝑐
𝑁 𝑢𝑛𝑎 𝑢𝑛𝑛

)

, (1)

here 𝑐 denotes the cost associated with adherence, and 𝑐 > 0. In the
atrix, 𝑢𝑛𝑎 represents the payoff when a non-adherer 𝑁 interacts with

n adherer 𝐴, and 𝑢𝑎𝑎 denotes the payoff when both individuals adhere,
hich includes the cost of adherence 𝑐. 𝑢𝑛𝑛 signifies the payoff when
oth individuals do not adhere. Additionally, when an adherer interacts
ith another non-adherer, there is a cost of 𝑐 to adhere, resulting in a
ayoff of 𝑢𝑛𝑎−𝑐. We assume that all payoffs are positive and normalized
ithin the interval (0,1), i.e., 0 < 𝑢𝑎𝑎, 𝑢𝑛𝑎, 𝑢𝑛𝑛 < 1.

We then introduce two fitnesses, 𝜋0
𝑖 (𝑡) and 𝜋1

𝑖 (𝑡) for strategies, which
epresent a combination of sociopsychological, economic, and personal
enefits obtained by individual 𝑖 when adopting behaviors 𝑋𝑖(𝑡) = 0
nd 𝑋𝑖(𝑡) = 1 at time 𝑡. Hence, the fitnesses 𝜋0

𝑖 (𝑡), 𝜋1
𝑖 (𝑡) for the non-

dherer and the adherer respectively, are the total sum of payoffs from
ll neighbors, which are calculated as follows:

⎧

⎪

⎨

⎪

⎩

𝜋0
𝑖 (𝑡) =𝑢𝑛𝑎

∑

𝑗∈
𝑋𝑗 (𝑡) + 𝑢𝑛𝑛

∑

𝑗∈

[

1 −𝑋𝑗 (𝑡)
]

𝜋1
𝑖 (𝑡) =𝑢𝑎𝑎

∑

𝑗∈
𝑋𝑗 (𝑡) + (𝑢𝑛𝑎 − 𝑐)

∑

𝑗∈

[

1 −𝑋𝑗 (𝑡)
]

,
(2)

here  includes all individuals connecting to individual 𝑖, and 𝑋𝑗 (𝑡)
enotes the strategy chosen by the neighbor 𝑗 of individual 𝑖.

Based on the fitnesses, a susceptible individual 𝑖 then autonomously
etermines whether to adopt the non-adherence strategy with a prob-
bility defined as

[𝑋𝑖(𝑡 + 1) = 0|𝑋𝑖(𝑡) = 1]

=
exp

{

𝜋0
𝑖 (𝑡)

}

{ 1 ′ ′
} { 0 }

,
(3)
exp 𝜋𝑖 (𝑡)𝑁 (𝑡)∕[𝑁 (𝑡) − 𝐼(𝑡)] + exp 𝜋𝑖 (𝑡)



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 186 (2024) 115289M. Xie et al.
Fig. 1. Interactive influence between Strategy adoption and Epidemic spreading.
The transmission dynamics of the SIS epidemic model are influenced by the choice of
two strategies, adherence, or non-adherence. Specifically, opting for the non-adherence
strategy leads to the infection of susceptible individuals, with 𝛽 denoting the rate of
being susceptible again. The symbol + indicates that the increase in the number of
infected individuals prompts a greater number of individuals to adopt the adherence
strategy.

where 𝐼(𝑡) indicates the count of infected individuals, and 𝑁 ′(𝑡) denotes
the total population at time 𝑡. The probability is influenced by two
factors: the fundamental payoffs and circumstantial information about
the infection ratio based on the research [8]. With an increase in the
number of infected individuals, there is a higher probability of strictly
adhering to epidemic prevention and control measures. Conversely,
when the infection count of individuals is low, the strategy selection
is largely dependent on the fitnesses.

2.2. Conformity-driven strategy updating rule

Beyond the self-determination deliberations, individuals will not
only weigh the fundamental payoffs but also adjust their decisions
based on the majority choices made by their neighbors. The phe-
nomenon is due to conformity, which is the tendency for individuals
to follow their decisions with the majority choices of their neighbors,
as illustrated in classic game theory [37].

In our model, individuals are assumed to possess knowledge of the
strategies and status of their neighbors. Driven by conformity with the
population, individuals are often influenced by their neighbors and the
population. Hence, for an individual with 𝑋𝑖(𝑡) = 0, if the majority of
their neighbors choose the same strategy (i.e., non-adherence), then the
strategy will be maintained with a higher probability. Conversely, if
the majority of neighbors choose differently, the individual is likely to
switch to the other strategy. The theoretical probability of a susceptible
individual transferring its strategy is expressed as follows:

P[𝑋𝑖(𝑡 + 1) = 1|𝑋𝑖(𝑡) = 0] = 1
1 + exp

[(

𝑁0 − 𝑘ℎ
)

∕𝐾
] , (4)

where 𝑁0 denotes the count of individuals who have adopted the
same strategy as the individual 𝑖, while 𝑘ℎ denotes half the number
of individual neighbors [20]. 𝐾 quantifies the selection intensity to
account for uncertainty in decision-making. In a similar way, we can get
the probability of strategy transition from 𝑋𝑖(𝑡) = 1 to 𝑋𝑖(𝑡 + 1) = 0, by
substituting 𝑁0 with the count of adherers, which depicts the learning
process of not only the neighbors but also the entire population.

2.3. Epidemic spreading process influenced by the strategy selection

The spreading of an epidemic is significantly influenced by the
contact patterns among individuals and the strategies they adopt in re-
sponse. When neighbors choose behavior strategies, it can greatly affect
3

the infection rate. For simplicity, we assume that strict adherence to
preventive measures grants complete protection and immunity against
the contagious disease, implying that the individuals who adhere to
rules remain unaffected by the epidemic during the given time step.

In the basic SIS model, an epidemic typically spreads pairwise
from an infected individual, denoted as 𝑗 to their neighbors with
a probability 𝛼 ∈ [0, 1]. Based on the model, we incorporate the
influence of strategies adopted by infected neighbors into our model.
The probability that a susceptible individual 𝑖 will become infected at
time 𝑡 + 1 is given by

P
[

𝑌𝑖(𝑡 + 1) = 𝐼|𝑌𝑖(𝑡) = 𝑆
]

= 1 − (1 − 𝛼)
∑

𝑗∈ [1−𝑋𝑗 (𝑡)] , (5)

where  is the set of individual 𝑗 who are connected to individual 𝑖. The
strategy adopted by neighbor 𝑗 at time 𝑡 is denoted by 𝑋𝑗 (𝑡). In addition
to contagion, each infected individual 𝑖 recovers with probability 𝛽 ∈
(0, 1] at time step 𝑡, transitioning back to a susceptible again.

Fig. 1 illustrates the interrelationship between strategy selection and
epidemic spreading in the model. In particular, the adoption of a non-
adherence strategy affects the rate at which individuals transition from
susceptible to infected states. Simultaneously, the real-time number of
infected individuals dynamically influences the strategy selection of the
population, with a higher prevalence of infections leading to a greater
probability of adherence.

3. Simulation

In this section, we present the simulation results and analysis of
our proposed game-theoretic epidemic model on the SIS model. Using
the networkx packages in Python, we can observe the epidemic phase
transition and the distribution of infected individuals at the stationary
state under varying system parameters. Additionally, we analyze the
adoption of strategies under two scenarios of conformity in different
settings of the epidemic. To further investigate the role of conformity,
we compare the epidemic sizes of two conformity scenarios with vari-
ous system parameters, which allows us to detect the potential positive
effect of promoting the adherence strategy.

3.1. Methods

The study uses a Watts-Strogatz (WS) small-world network com-
prising 4000 vertices. The network has an average degree of 10 and
a rewiring probability of 0.7. In order to simulate different situations
during an epidemic, we set various parameters as follows: The number
of initially infected individuals denoted as 𝐼(0) ∈ {100, 800}, with the
pairwise infection rate 𝛼 ∈ {0.035, 0.070, 0.140} and the recovery rate
𝛽 ∈ {0.005, 0.010, 0.015}. To start the simulation, about 100 vertices
are selected to be infected, 𝐼(0) = 100 with 𝛼 = 0.070, 𝛽 = 0.010. The
selection intensity 𝐾 is characterized by a value of 1∕1000.

With regard to the two strategy update rules, we define 𝜌𝑐 as the
proportion of individuals in the population motivated by conformity,
implying that the proportion of profit-driven individuals is 1−𝜌𝑐 , where
𝜌𝑐 ∈ {0.1, 0.9}. Initially, 𝜌𝑐 is set as 0.9, representing a situation with a
high proportion of conformity-motivated individuals.

To simulate different situations during an epidemic, we define
different values for the payoffs and the cost 𝑐, therefore three kinds
of payoff matrices for adopting strategies are designed as follows,

• PM 1: 𝑢𝑎𝑎 < 𝑢𝑛𝑎 − 𝑐 < 𝑢𝑛𝑎 < 𝑢𝑛𝑛, 𝑐 = 0.02.

𝑃1 =
(

𝐴 𝑁
𝐴 0.01 0.03
𝑁 0.05 0.1

)

(6)

• PM 2: 𝑢𝑛𝑎 − 𝑐 < 𝑢𝑎𝑎 = 𝑢𝑛𝑎 < 𝑢𝑎𝑎, 𝑐 = 0.01.

𝑃2 =
(

𝐴 𝑁
𝐴 0.05 0.04

)

(7)

𝑁 0.05 0.1
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Fig. 2. Impact of the recovery rate 𝛽, the payoffs, and the per-contact infection rate 𝛼 on the final epidemic size and the final size of the non-adherers. The spread size
is characterized by the density of infected individuals in the stationary epidemic, denoted by 𝜌I. The term, 𝜌non−ad represents the proportions of susceptible non-adherers. (a) Final
epidemic size 𝜌I versus 𝛼 for three distinct 𝛽s’ values. (b) Final epidemic size 𝜌I versus 𝛼 for three payoff matrices. (c) 𝜌non−ad at stationary epidemic versus 𝛼 for three different
s’ values. (d) 𝜌non−ad at stationary epidemic versus 𝛼 for three payoff matrices.
Fig. 3. Distribution of infected (𝐼) individuals with different parameters at the stationary epidemic. The distribution of infection count is influenced by three distinct
parameters. In Figs. 3(a)–3(c), the distributions are displayed with each parameter varied, including 𝛽, 𝛼, and the payoffs in order. (a) 𝛽 ∈ {0.005, 0.010, 0.015}, 𝛼 = 0.07, with the
payoff matrix PM 2. (b) 𝛼 ∈ {0.035, 0.070, 0.140}, 𝛽 = 0.01, with the payoff matrix PM 2. (c) 𝛼 = 0.07, 𝛽 = 0.01, with the payoff matrix PM 1, PM 2, and PM 3.
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• PM 3: 𝑢𝑛𝑛 < 𝑢𝑛𝑎 − 𝑐 < 𝑢𝑛𝑎 < 𝑢𝑎𝑎, 𝑐 = 0.01.

𝑃3 =
(

𝐴 𝑁
𝐴 0.1 0.04
𝑁 0.05 0.01

)

(8)

he three payoff structures are based on experimental data to achieve
balance between the infection count and the strategy payoff.

.2. The effect of parameters in the game-theoretic SIS model

The following simulations focus on the number of individuals in
he infected state 𝐼 in the stationary epidemic, denoted as 𝜌I. Firstly,

we demonstrate the epidemic phase transition of the infection counts
under different parameters. Additionally, we present the distribution
of the infection count at the stationary state when time is sufficiently
extended, with the aim of obtaining the experimental expectation of it.
4

The system dynamics of the epidemic are governed by three param-
eters, namely the pairwise infection rate 𝛼, the recovery rate 𝛽, and
the fitnesses 𝜋0

𝑖 (𝑡) and 𝜋1
𝑖 (𝑡). For the purpose of exploring the effect of

parameters in our model, we analyze the final epidemic size 𝜌I over a
ange of varying pairwise infection rates 𝛼 in Fig. 2. More specifically,
e vary the value of 𝛽 in terms of epidemic transmission, as well as
ifferent payoff matrices in terms of strategy choice. For clarity, these
esults are presented using the quasi-stationary algorithm, as detailed
n [38].

As illustrated in Figs. 2(a)–(b), it can be observed that the final
nfected ratio 𝜌I consistently increases as 𝛼 rises. In particular, Fig. 2(a)
llustrates a sequential decrease in 𝜌I for 𝛽 = 0.005, 𝛽 = 0.010,
𝛽 = 0.015 with a fixed payoff matrix (PM 2), which indicates that a
higher 𝛽 contributes to a smaller epidemic size. Similarly, Fig. 2(b)
demonstrates a corresponding trend where the final epidemic size 𝜌I

decreases sequentially as the payoff 𝑢 increases from payoff matrix
𝑎𝑎
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PM 1 to PM 3. The comparative advantages of the two strategies over
time in the epidemic are reflected in the different values of payoffs.
With a constant recovery rate 𝛽 = 0.010, a higher 𝑢𝑎𝑎 correlates with
a reduced epidemic size. Conversely, as illustrated in Figs. 2(c)–(d), an
increase in 𝛼 is accompanied by a reduction in 𝜌non−ad. An increase in 𝛼
results in a reduction in the number of susceptible individuals in the
stationary epidemic. Meanwhile, more susceptible individuals adopt
the adherence strategy, therefore 𝜌non−ad decreases. Analogously, as 𝛽
increases, there is a corresponding decrease in 𝜌non−ad, demonstrating
the significance of enhancing the recovery rate in promoting adherence
to the guidelines. As shown in Fig. 2(d), with the lowest value of 𝑢𝑎𝑎
and the highest 𝑐 for PM 1 leads to the highest value of 𝜌non−ad, which
is attributed to the fact that as 𝑢𝑎𝑎 increases, fewer individuals adopt
the non-adherence strategy, thereby influencing the final proportion of
its adopters.

Nevertheless, in Fig. 2(d), there is a larger disparity between the
red curves and the other two curves compared to Figs. 2(a)–(c). In
particular, as 𝛼 approaches 0, the three curves in Figs. 2(a)–(c) overlap.
However, in Fig. 2(d), both the blue curve and green curve are above
0.6, while the red curve with PM 3 is around half, with a value between
0.3 and 0.4. The observed pattern can be attributed to the fact that
when the infection count is low, a greater proportion of individuals
tend to adopt the non-adherence strategy, and the probability is largely
dependent on the fitnesses. In the payoff matrix, the payoffs for non-
adherers 𝑢𝑛𝑎 and 𝑢𝑛𝑛 are identical, but 𝑢𝑛𝑎 < 𝑢𝑛𝑛. As a result, the
blue and green curves are close, and 𝜌non−ad exhibits a higher level
of adoption. However, in PM 3, where the payoff 𝑢𝑛𝑎 > 𝑢𝑛𝑛, more
susceptible individuals are inclined to adopt the adherence strategy.

Furthermore, we investigate the expectation of infection count un-
der different parameter values in the dynamic system, as illustrated
by our experiments in Fig. 3. In Fig. 3(a), the broader distribution de-
noted by green triangles contrasts with the narrower blue distribution,
while the red scatter plot, indicating the highest variance, extends the
farthest. Specifically, the red distribution has a standard deviation of
20.74, while the other distributions have standard deviations of 17.36
and 14.77, respectively. Notably, the blue scatter plot, corresponding to
the recovery rate 𝛽 = 0.005, is positioned on the right with its mode of
3004. In contrast, the red distribution, which corresponds to the highest
recovery rate, is positioned towards the left, with a mean value of
2720. The green scatter plot, reflecting an intermediate recovery rate,
is positioned between the other two distributions, with a mean value of
2842, which suggests that a lower 𝛽 corresponds to a higher count of
infected individuals and a more pronounced peak in the distribution. In
Figs. 3(b)–(c), the differences in mode and peak are relatively minor.
In detail, the expectation value of the distribution with 𝛼 = 0.07,
marked by the green triangles, is 2839, whereas the distribution with
double the 𝛼 value has a peak near 3000. In contrast, the distribution
with 𝛼 = 0.035, depicted by blue stars, exhibits a peak value of 2627,
which reveals a contrasting relationship between the distribution and
the parameter 𝛼, in contrast to 𝛽. In Fig. 3(c), the distribution with
PM 1 is positioned on the rightmost side of the graph, where the peak
value is near 3430. The distribution with PM 3, whose expected value
is approximately 1962, is situated on the leftmost side, indicating that
a lower payoff 𝑢𝑎𝑎 and a higher adherence cost 𝑐 correspond to a higher
count of infected individuals. The distribution corresponding to PM 2
has an expected value of around 2824, which indicates the steady-state
infection count in the experiment when using PM 2, with 𝛼 = 0.07, and
𝛽 = 0.010 in our model.

3.3. Time evolution of epidemic and strategy selection

In addition to analyzing the impact of the various parameters, we
also explore the role of conformity. We observe the time evolution of
individual strategy ratio and infection ratio with two different values
of conformity-driven fraction 𝜌𝑐 in 40 iterations, which are depicted in
5

Fig. 4.
To simulate different epidemic situations, in the two conformity
scenarios, we respectively set two different initial counts of infected
individuals 𝐼(0). Figs. 4(a)–(b) present a context favorable to the non-
adherence strategy, with 𝐼(0) = 100 and PM 1. In such a setting,
a significantly larger fraction of the population opts for the non-
adherence strategy due to the higher payoff of the adherence strategy
and a higher cost of adherence. As the progression of the epidemic,
the infected ratios increase, which are depicted as green dashed lines.
Therefore, a general decline in both 𝜌non−ad, represented by the red
diagram, and 𝜌ad, illustrated by the blue diagrams, is observed due
to the reduction of susceptible population. However, the non-adherers
ratio is higher than the adherers ratio during the initial phase of the
epidemic. At this stage, the number of infected individuals is relatively
low, and the higher payoff for non-adherence 𝑢𝑛𝑛 in PM 2 leads to an
increased prevalence of non-adherence in our model. As the ratio of
infected individuals increases, the adherers surpass the non-adherers
count.

Conversely, with 𝐼(0) = 800 and PM 3 in Figs. 4(c) and (d), the
epidemic conditions are more conducive to the adherence strategy.
Consequently, the proportion of adherers, represented by the blue
curve, is always greater than that of individuals who do not adhere,
as depicted by the red curves.

The introduction of a high conformity fraction serves to accentu-
ate the divergence in strategy adoption between the two conformity
scenarios. Specifically, in Figs. 4(a) and (b), the dominance of the non-
adherence strategy gives rise to a greater number of non-adherers as a
consequence of conformity, thereby widening the gap between the each
other. A similar observation can be made when comparing Figs. 4(c)
and (d). Even in the stationary state of the epidemic where the adherers
exceed the non-adherers, the disparity in Fig. 4(c) with 𝜌𝑐 = 0.9 is
greater than in Fig. 4(d) with 𝜌𝑐 = 0.1. In the scenario where the
adherence strategy is favored, the adoption of this strategy is more
prevalent in the early stages of the epidemic. Consequently, conformity
encourages greater adoption of the adherence strategy, which leads
to a greater disparity in the number of adherers compared to non-
adherers. As the number of infections increases, the adoption of the
non-adherence strategy decreases.

In order to visually examine the relationship between the density
of non-adherence individuals, 𝜌non−ad and the infection count, we ana-
lyze their temporal variation depicted in Figs. 4(e)–(h), after repeated
simulations. In all four figures, the curves exhibit a general decline,
indicating that as the infection ratio increases, 𝜌non−ad decreases, which
is consistent with our theory.

In the situation favoring the non-adherence strategy in Figs. 4(e)–
(f), we note a transient increase in 𝜌non−ad when the infected ratios
are close to 0, which results from, at the beginning of the epidemic,
the infected ratio is low, leading to fewer individuals adhering to
guidelines. However, the increase is more pronounced in Fig. 4(e),
which depicts the scenario with a high conformity fraction 𝜌𝑐 = 0.9,
compared to Fig. 4(b). A higher fraction of the conformity-driven
population leads to more individuals adopting the mainstream non-
adherence strategy. This occurs despite the continuing, but relatively
insignificant, rise in infections. On the contrary, in Fig. 4(g), there
is a sharp decline in 𝜌non−ad when the infection ratio is low. In the
scenario with the relatively high infection ratio and the superior payoff
of adherence which favors the adherence strategy, adherence becomes
the dominant strategy, with a greater number of individuals conforming
to it.

3.4. Stationary state of epidemic and strategy selection under two confor-
mity scenarios

For the purpose of gaining further insight into the role of conformity
in epidemic dynamics, we perform a comparative analysis of the final
epidemic size, denoted as 𝜌I, across different conformity scenarios in

I
Fig. 5. First, the stationary infection ratio 𝜌 , is examined as a function
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Fig. 4. Time evolution of the epidemic spreading and strategy selection under four scenarios. The progression of the epidemic is characterized by the densities of infected
individuals, susceptible adherers 𝜌ad, and susceptible non-adherers 𝜌non−ad. In panels (a)–(d), we display the temporal infection ratio in green, 𝜌non−ad in red, and 𝜌ad in blue. Panels
(e)–(h) illustrate the corresponding ratio of non-adherers 𝜌non−ad, as the infection count changes over time. Different scenarios are represented across panels. (a) and (c) illustrate
strategy updates in a scenario with a high conformity fraction 𝜌𝑐 = 0.9, whereas (b) and (d) depict strategy updates with a low conformity fraction 𝜌𝑐 = 0.1. (a)–(b), and (e)–(f)
depict scenarios with the initially infection count 𝐼(0) = 100 and PM 2, which favors non-adherence strategy. (c)–(d), and (g)–(h) represent situations favoring adherence strategy
with the initially infection count 𝐼(0) = 800 and PM 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. The impact of conformity on the final epidemic size 𝜌I in two situations with varying system parameters. In (a) and (d), the solid curves denote situations with a
high conformity fraction 𝜌𝑐 = 0.9, while dashed curves denote the situations with a low conformity fraction 𝜌𝑐 = 0.1. The blue curves indicate PM 2 with 𝐼(0) = 100, while the red
curves indicate PM 3 with 𝐼(0) = 800. The curves are fitted to the data with polynomial three-order fitting techniques in order to facilitate comparison. We vary the conformity
fraction 𝜌𝑐 under different values of 𝛼 ((b)–(c)) and 𝛽 ((e)–(f)) to observe their impact on the epidemic size 𝜌I. To facilitate comparison, the following values are used for the
initial settings: PM 2 with 𝐼(0) = 100 for (b) and (e), PM 3 with 𝐼(0) = 800 for (c) and (f). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
of the pairwise infection rate 𝛼 and the recovery rate 𝛽 in four scenarios,
which is depicted in Figs. 5(a) and (d). In particular, we consider two
values of 𝜌𝑐 , specifically 𝜌𝑐 = 0.1 and 𝜌𝑐 = 0.9, each with different initial
conditions for the payoff matrix and 𝐼(0). Figs. 5(b) and (e) display the
situation in PM 2 with 𝐼(0) = 100, while Figs. 5(d) and (f) show the
situation in PM 3 with 𝐼(0) = 800. To present our comparative findings
more clearly, we employ polynomial three-order fitting techniques to
generate curves representing the empirical trends.
6

In Figs. 5(a) and (d), the blue curves representing PM 2 consistently
lie above the red curves denoting PM 3, which is attributed to the
fact that PM 2 promotes non-adherence, consequently amplifying the
epidemic size. Notably, the disparity between the dashed red curve
and the solid red curve is consistently greater than that observed for
the blue curves. In PM 3 with the highest value of 𝑢𝑛𝑛, adherence is
dominant, and a high conformity fraction prompts more individuals to
adopt an adherence strategy.
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Figs. 5(b)–(c), (e)–(f) illustrate a detailed analysis of how the sta-
tionary infection ratio 𝜌I varies with changes in the conformity fraction,
larifying the impact of various parameters and conformity on the
pidemic spreading. Specifically, as we increase 𝛼 and decrease 𝛽,
he epidemic size 𝜌I diminishes. Moreover, an increase in 𝜌𝑐 leads
o a decrease in 𝜌I, demonstrating the positive impact of conformity
n epidemic control. This is because conformity promotes adherence
trategy in the late stages of the epidemic, thereby highlighting the
ignificant role it plays in epidemic control and management.

. Conclusions and outlooks

In this study, we investigate the complex dynamics between strate-
ic decision-making and epidemic propagation. Specifically, our novel
odel integrates an epidemic-spreading mechanism with a dynamic

dherence strategy updating process. Taking into account individual
elf-determination, including information and payoff related to the
pidemic, as well as the imitation of the population due to confor-
ity, we analyzed two strategy updating rules: profit-driven decision-
aking and conformity-driven decision-making. In terms of the epi-
emic spread, we consider the impact of neighboring strategies on the
nfected probability. Through extensive simulations, we explore the
ffect of various system parameters and obtain the expected number
f infected individuals from the experiments. Under four different
cenarios, the evolution of the epidemic over time demonstrates how
onformity widens the disparity between the two strategies. Further
imulations are carried out to explore the effect of conformity on
he epidemic size, revealing that conformity promotes the adherence
trategy, thereby positively diminishing disease spread size.

Future research could be directed toward refining the model to
ccount for varying levels of conformity, including partial conformity
cross diverse populations. Additionally, individuals could be depicted
s adopting strategies based on a comprehensive consideration of both
spects, rather than a unilateral consideration. It would be beneficial
o explore the impact of additional social factors on strategy adoption,
uch as rationality and risk perception. Furthermore, the model could
e expanded to simulate the SIR (Susceptible–Infected–Recovered) and
ther epidemic models in order to enhance its predictive power and
pplicability to actual epidemic containment strategies. Further simu-
ations could also assist in understanding the thresholds and conditions
hat give rise to significant changes in epidemic dynamics.
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