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In social dilemmas, most interactions are transient and susceptible to restructuring, leading to continuous
changes in social networks over time. Typically, agents assess the rewards of their current interactions and
adjust their connections to optimize outcomes. In this paper, we introduce an adaptive network model in the
snowdrift game to examine dynamic levels of cooperation and network topology, involving the potential for
both the termination of existing connections and the establishment of new ones. In particular, we define
the agent’s asymmetric disassociation tendency toward their neighbors, which fundamentally determines
the probability of edge dismantlement. The mechanism allows agents to selectively sever and rewire their
connections to alternative individuals to refine partnerships. Our findings reveal that adaptive networks are
particularly effective in promoting a robust evolution toward states of either pure cooperation or complete
defection, especially under conditions of extreme cost-benefit ratios, as compared to static network models.
Moreover, the dynamic restructuring of connections and the distribution of network degrees among agents are
closely linked to the levels of cooperation in stationary states. Specifically, cooperators tend to seek broader

neighborhoods when confronted with the invasion of multiple defectors.

1. Introduction

The exploration of cooperation in evolutionary dynamics has been
a scholarly pursuit of profound significance, and social dilemmas serve
as typical illustrations of the fundamental conflict between individual
and collective interests in the population. Among the foundational
and frequently utilized models in evolutionary game theory are the
prisoner’s dilemma [1] and the snowdrift game [2], where agents face
the binary choices of cooperation or defection.

Pioneering work by Nowak and May revealed that the spatial orga-
nization of agents can markedly enhance the emergence of cooperative
behaviors [3]. However, the study of the snowdrift game (SDG) showed
that spatial structure does not always promote cooperative behaviors,
but often inhibits the evolution of cooperation [4]. Subsequent studies
discussed the examination of evolutionary games in various spatial
topologies [5,6]. Recently, numerous mechanisms have been proposed
to be effective measures to improve cooperation in specific situations.
Among them, punishment was considered a viable mechanism for
promoting and maintaining cooperation [7]. Furthermore, Perc et al.
investigated various distributions of external factors that influence
agent diversity and concluded that power law distributions are the most
conducive to promoting cooperation [8].
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A recent study examined the dynamic of information in evolving
networks using the birth-and-death process [9]. Taking into account the
mechanisms of asymmetric interaction, the study conducted by Feng
et al. elucidated that the presence of a strong detrimental agent can
help improve the incidence of cooperation within the framework of the
SDG [10]. Li et al. constructed a resource-based conditional interaction
model where limited resources are redistributed among the popula-
tion, and players’ resources influence their ability to interact, with a
player paying resources as a learning cost when imitating a neighbor’s
strategy [11]. A novel game model with heterogeneously stochastic in-
teractions was proposed, which shows that heterogeneously stochastic
interactions promote cooperation [12]. Moreover, evolutionary game
theory applied to a networked population, along with its various exten-
sions such as the mixing game and multigame, was empirically explored
to serve as an effective method to address social dilemmas [13,14].

The characteristics of classic networks based on a graph-theoretical
framework were extensively examined in previous studies, leading
to the emergence of numerous complex network models, including
multilayer networks [15,16], temporal networks [17-19], and higher
order networks [20,21]. These innovative network frameworks provide
a structured foundation for investigating spatial evolutionary games
within populations. Notably, Gardefies et al. explored evolutionary
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game dynamics characterized by interdependent networks reflecting
various social ties among individuals [22]. In addition, current research
on temporal networks focused primarily on the dynamics of network
edges and cooperation density [23], with particular attention to the
variability of interaction relationships over time [24]. Furthermore, the
work proposed by Alvarez-Rodriguez et al. offers a new method for
implementing informed actions aimed at improving cooperation within
social groups [25]. Capraro et al. explored the shift from outcome-based
to language-based preferences and their impact on moral concerns and
experimental economics [26,27].

In real-world interactions, it is observed that most of such engage-
ments are transient and susceptible to external reorganization, resulting
in a dynamic evolution of social networks over time. Consequently, it is
imperative to recognize that networks represent dynamic entities [28].
The establishment of a dynamic and efficient network highlighted the
beneficial impact of autonomy in fostering cooperative behavior [29].
Numerous works clarified that cooperation is enhanced when coop-
erative agents can achieve a favorable topological positioning. This
enhancement is attributed directly to the avoidance of defectors [30,
31], or indirectly to the new participants [32], or ongoing alterations
in the network structure [33]. Numerous research studies have been
conducted on the adjustment of social ties for individuals to select
their peers based on local reputation information [34,35]. Szolnoki
et al. demonstrated that coevolving random networks can develop
appropriate mechanisms for each social dilemma, enabling cooperation
to thrive even in adverse conditions [36]. Taking into account the
arbitrary spatial and temporal heterogeneity, a recent study showed
that transitions among a large class of network structures favor the
spread of cooperation, even if each social network would inhibit coop-
eration when static [37]. Furthermore, asymmetrical interactions have
emerged as a critical focal point in contemporary research, warranting
significant attention and investigation [38].

More recently, there has been an increasing focus on the dynamics
of adaptive [39] or coevolutionary networks [40], where connectivity
is modified dynamically corresponding to their dynamical states. A
series of scholarly investigations investigated how agents are capable
of modulating their interactions with neighboring entities, employing
withdrawal or maintenance strategies, depending on their level of
satisfaction and selected approach [41,42]. Research has shown that
the coevolutionary rule which affects the random topology of the
interaction network triggers the spontaneous emergence of a robust
multilevel selection mechanism [43]. In addition, Zimmermann et al.
explored the dynamic relationship between the internal states of the
interacting elements and their interaction network [44] and examined
scenarios where the network locally adjusts based on the overall payoff
of the agents [45]. Yao et al. investigated co-evolutionary dynamics of
cooperation by examining how willingness to participate in social inter-
actions and payoff accumulation influence the activation or inhibition
of network edges, ultimately affecting local network dynamics and the
evolution of cooperation under varying sensitivities and temptations to
defect [46]. As a further step, a new network adaptation by separating
disassortative neighbors was proven to be an effective way to resolve
the social dilemma [47].

By following the previous path, we primarily focus on investigating
the adaptive evolving network in which the network structure jointly
evolves with the states of the interacting agents. Within such a frame-
work, the population structure can be captured by a dynamic network,
wherein each node signifies agents, while the edges symbolize their
alterable interactions. Agents probably imitate current neighbors who
have higher payoffs over time, and it is common experience that agents
tend to cut interaction links when faced with adverse neighborhoods.
As a reasonable assumption, it can be posited that, after altering the
strategies, the disassociation tendency between any pair of neighbors is
asymmetric and depends on the comparative payoff that the focal agent
derives from all neighbors. More precisely, the lower the payoff that a
specific neighbor brings to the focal agent, the higher the tendency of

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 185 (2024) 115187

the focal agent to dissociate from that neighbor, which directly impacts
whether they will persist as neighbors in the next step, i.e., determining
the persistence of the edge between them. In addition, agents who
terminate interactions with unfavorable neighbors probably choose
new neighbors to replace them.

The proposed adaptive mechanism allows for the exploration of
diverse strategies and facilitates the emergence of novel interaction
patterns within the social system. We experimentally investigate the
time steps required for a network to reach a stationary state under
various initial configurations, as well as the proportion of cooperators
within the network. These results are compared with those obtained
from static networks with identical configurations. Subsequently, we
analyze the changes in different types of edges during the evolution-
ary process. Furthermore, we elucidate the degree distribution of all
agents upon reaching the stationary state, distinguishing between the
degree distributions of cooperators and defectors. Finally, the average
clustering coefficient and average path length of the network are also
examined at both the initial stage and after evolving to the stationary
state.

The paper is organized as follows. In Section 2, we delineate the
detailed rules that govern both strategy and network evolution. The key
results and significant experimental findings are presented in Section 3.
Finally, Section 4 offers a summary of our findings and a discussion on
potential directions for future research improvements.

2. Model

Interaction dynamics is often characterized by the possibility of
severing existing edges and forming new ones. Within the framework
of game theory, these dynamic changes in interactions are primarily
influenced by the payoffs received from current neighbors. Motivated
by this reality, we propose an adaptive and coevolutionary model
for the SDG. We consider each agent to have the capability to sever
certain edges at the end of each round of the game. At each time
step, every agent exhibits a specific disassociation tendency to all of its
neighbors based on the received payoffs. In addition, agents who opt to
terminate interactions with unfavorable neighbors have the freedom to
choose new neighbors to replace them. Based on the these assumptions,
we introduce the SDG model along with delineating agents’ payoffs
and the strategy update rules. Subsequently, we define the concept
of an asymmetric disassociation tendency, which serves as the crucial
determinant for the probability of adjusting unfavorable connections.
Therefore, our proposed adaptive network structure not only allows
for the termination of existing connections but also accommodates the
establishment of new ones, which ensures that the aspect provides
a comprehensive exploration of microscopic dynamics, incorporating
both the dissolution and formation of connections.

2.1. Strategy evolution

The classic SDG framework encapsulates a scenario in which two
drivers find their way home obstructed by a snowdrift. In this social
dilemma, each agent faces the decision of cooperating (C) or defecting
(D). When both parties opt for cooperation, it enables both to reach
their common goal, resulting in an equivalent return, denoted R = 1.
In contrast, if both agents decide to defect, their progress is impeded,
leading to no return P = 0. Alternatively, if an agent chooses the defec-
tion strategy and encounters a neighbor who has chosen cooperation,
they can ultimately reach their destination. It is essential to note that
in this situation, the agent opting to defect attains the maximum return
without any cost represented as T = 1 + r (where 0 < r < 1). Although
the cooperative agent receives a lesser return, denoted as S = 1 —r,
where r represents the cost-to-benefit ratio. Consequently, the resultant
payoff matrix A can be expressed as in Eq. (1), satisfying7 > R > .S > P
and 2R=S+T.

R S 1 1-r
A=<T P>=<l+r o)' M
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The state at the time ¢t + 1

Fig. 1. A schematic representation of the adaptive mechanism: evolution of network state from ¢ to r + 1. Here, cooperative nodes are visually denoted by the color blue,
whereas defectors are represented in red. We partition the evolutionary process into two distinct phases: the strategy updating and the network updating, elucidating its underlying

principles and mechanisms. During the strategy updating, agents adjust their strategies based on the accrued payoffs

+j» while in the network updating, agents rewire their

connections driven by the disassociation tendency D;;. In the network updating phase, gray dashed lines indicate the connections to be severed, while red lines represent newly

formed connections following the adjustment of adverse neighbor relationships.

Consider a population consisting of N agents, each participating
in pairwise SDG interactions with their neighbors. In this context, the
strategic choices available to each agent s; are defined as cooperation
denoted as [1,0], or defection termed as [0, 1]. In this way, the neigh-
borhood of any given agent i, denoted as N}, comprises agents directly
interconnected to agent i through a single edge. The size of V; defines
the degree of i, aptly termed k;. At each time step, every agent engages
in interactions with all neighbors and subsequently accumulates its
total payoff by Eq. (2).

I, = Z I'IU = Z s,-Asz, ()]
JEN; JEN;

where j denotes any neighboring agent of agent i, and II;; is the
corresponding payoff between them.

After interacting with all neighbors in each round, all agents have
the opportunity to update their strategies. Here, an agent j randomly
chooses one of its neighbors and imitates the strategy of i with a
probability defined by Eq. (3), meaning that the agent is restricted to
imitate the strategy of its neighbor who attains higher payoffs.

-1,

e et R 5 AN s
P (Si — Sj) = J (+r)ymax(k;.k;) Pz 3
0 ;< 105

2.2. Network evolution

Agents are disinclined to interact with neighbors who produce lower
rewards for themselves. In other words, agents develop a disassociation
tendency based on their own benefits in relation to all neighbors at each
time step. Therefore, we assess the disassociation tendency of the agent
i toward the neighbor j at time ¢ according to the dynamics defined
by Eq. (4):

D=7 ¥ U0 1,0 @
' meN;()

where m represents every neighbor of agent i. IT;;(f) denotes the payoff

that neighbor j provides to agent i at time ¢, and similarly I7;,,(¢) is the

payoff contributed to i by all its neighbors.

As a crucial element of our model, we assume that the disassociation
tendency between a pair of neighbors i and j is asymmetric, i.e., D;;(#)
is not necessarily equal D;(#). It is worth highlighting that both D;;(t)
and D () collectively influence whether they maintain their neighborly
relationship at time ¢ + 1. Consequently, we define the probability

I;;(t+1) that the edge between neighbors i and j will not be connected
in the next time step as in Eq. (5), ensuring that the probability always
remains in the [0, 1] interval.
S S
Dij()+Dji(1) *
I+e = 2

Generally, agents tend to look for new neighbors after adjusting the
adverse social links. When an agent is untied to a neighbor, we provide
the agent with the autonomy to select a new neighbor or maintain its
current set of connections without forming a new link. Formally, we
consider two nodes i and j that are neighbors at time 7. If nodes i
and j decide to no longer interact at time ¢ + 1, they both possess the
autonomy to choose new connections. The process ensures the stability
of the total number of edges in the network, as the autonomy granted
to the agents in selecting new neighbors or retaining the current state
prevents abrupt changes in the network’s overall connectivity.

To encapsulate our model, Fig. 1 depicts a prototypical adaptive
mechanism where the state of the network evolves over time 7 to 7+ 1.
Regarding the strategy update, agents probably imitate their neighbors
with higher pay-offs through pairwise comparison. In addition to them,
updates to the network structure allow agents to cut off ties with
unfavorable neighbors and autonomously seek new connections. Specif-
ically, each pair of neighbors possesses a set of asymmetric dissociation
tendencies, influenced by their relative payoffs, which reflects the prob-
ability of them not remaining neighbors in the subsequent time step.
For instance, Agent 4 exhibits different dissociation tendencies toward
its neighbors, Agents 1 and 3. It is illustrated in the diagram where
Dy = %r and Dy, = —%r, which are derived from Eq. (4) and depend on
the specific payoff contributions of each neighbor. Additionally, Agents
5 and 6 exhibit asymmetric dissociation tendencies toward each other,
stemming from the contrasting nature of their relationships within the
neighborhood network. It is noteworthy that when pairs of agents
contemplate the termination of their connections in the subsequent
time step, three distinct scenarios might unfold: first, both parties
opt to seek new connections independently; secondly, one party seeks
new connections while the other does not; or thirdly, neither party
establishes new connections.

The intertwined coevolution of strategy and network connection
underscores the adaptive nature of the system, wherein agents con-
tinually adjust their strategies based on the success of their neighbors
while simultaneously reshaping their social network connections. This
symbiotic relationship between strategy and network dynamics not
only influences individual agent behavior but also shapes the emergent
properties and collective behavior of the entire network over time.

Lya+1)= ©)
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Fig. 2. Time evolution of f, for various r values under different initial network configurations. The evolution of f, is examined for various values of r with respect to the
number of evolution iterations depicted for initial network structures of RG (a) and WS (b), where solid and dashed lines correspond to k =4 and k = 10 respectively. Different
colors in the curves indicate distinct values of r as illustrated in the legend. Across all initial topologies, cooperation flourishes predominantly at lower values of r, with evolution

stabilizing at approximately 200 steps.
3. Analysis of the simulation results

In this section, we describe our simulation methodology and present
the findings that illustrate the coevolution of cooperation levels and
network structures in various parameter configurations. To elucidate
the potential influence of various initial network topologies on system
dynamics, we employ two distinct network models: random regular
graph (RG) [48] and Watts-Strogatz small world network (WS) [49].
WS is generated with p, = 0.1 as its rewiring probability. Furthermore,
both RG and WS networks with average degrees of k =4 and k = 10. In
all cases, the complete network comprises N = 2,000 nodes. Initially,
each agent is randomly designated as either a cooperator or a defector
with an equal probability. Simulations are programmed in Python 3.9
using the Anaconda environment.

3.1. Influence of the adaptive network on the cooperation

First, we examine the evolutionary dynamics of the fraction of co-
operators (f,) across various types and average degree networks under
varying r, which involves an investigation of the evolutionary process
of f, as it progresses toward a stationary state under different param-
eter conditions over time. Fig. 2 illustrates the average alterations of
f. through 10 independent runs with different parameter values over
iterations. Any initial network structure is more likely to evolve to a
stationary state at a slower pace compared to traditional static models
because of the dynamic adaptation of the network structure itself.

However, as illustrated in Fig. 2, for any given network structure
and parameter conditions set here, f, consistently converges to a
stationary state within 200 iterations. For both initial RG (a) and
WS (b) structures, their impact on the temporal evolution of f,. is
not significant. It demonstrates the resilience of the adaptive network
model, which can stabilize cooperative behavior even with different
initial network structures like RG or WS. Generally, lower values of r
are associated with a higher prevalence of cooperation, while larger
values correspond to an increased presence of defection. Furthermore,
as r approaches the extreme (0 or 1), the evolutionary dynamics of f,
demonstrate a heightened pace, indicating a more rapid transition in
the prevalence of cooperation. Moreover, under extreme values of r,
the influence of initial network structure and different average degree
values on the evolution of cooperation can be completely ignored, as
prominently evidenced even in r = 0.2.

Fig. 2 also reveals how different network structures and average
degrees influence cooperation dynamics. It is notable that under other
conditions (» = 0.4, 0.6, 0.8), the networks of k = 10 exhibit a
significantly higher level of cooperation compared to k = 4, implying
that having more neighbors to evaluate the tendency to disassociation
is more conducive to the prevalence of cooperation. Especially note-
worthy is the case where r = 0.8, where the cooperation frequency

eventually decreases to O in the networks of k = 4, while a higher
average degree, k = 10, remarkably enhances f, and accelerates its
attainment of a stationary state.

The adaptability allows the system to self-organize and optimize
connections, creating advantageous cooperative clusters that tradi-
tional static networks struggle to replicate. To further investigate the
discrepancies between our proposed adaptive networks and traditional
static networks based on the same game model, we analyze the stability
of f. over evolutionary iterations, as shown in Fig. 3. It is essential
to highlight that the adaptive co-evolving network shares identical
initial network types and average degrees with the static network
configuration. In contrast to static networks, our adaptive network
exhibits a propensity toward evolving into either pure cooperation or
pure defection states under sufficiently small or large values of r, a
trend that is scarcely observed in static networks.

Specifically, the function f. of the RG (k = 4) topology reveals
that within the parameter range where r < 0.5, the adaptive network
exhibits a greater proportion of cooperators compared to instances
where r exceeds 0.5. Within the broader range of 0 < r < 0.8, the
density of cooperation of the adaptive RG with k = 10 consistently
outperforms that of the static network with the same topology, while
as r increases, the static network demonstrates a relatively higher level
of cooperation compared to the adaptive network. Interestingly, the f,
values for static WS networks with k = 4 and k = 10 exhibit negligible
disparities, with a sudden spike observed at r = 0.1. In contrast,
adaptive networks manifest significantly divergent system behaviors in
various average degree configurations.

In the case of WS networks with k& = 4, both dynamic and static
networks display advantages at different r values, although differences
are not significant. However, for adaptive networks with WS topology
and k = 10, a noticeable advantage emerges under parameter condi-
tions where r is greater than or equal to 0.4. When the value of r
is relatively high, indicating that defectors dominate the system, we
observe that the f, in adaptive networks is higher compared to that in
static networks. Based on this, we can infer that, as numerous previous
research works have highlighted, the essential function of network
configurations in cultivating cooperative clusters and consequently de-
fending against incursions by defectors is significant. Dynamic adaptive
networks indeed exhibit distinct characteristics in system behavior
compared to traditional fixed network structures. To validate the for-
mation of these cooperative clusters, we next further analyze this
dynamic network topology.

3.2. Impact of the dynamic network topology
To understand such an interaction, we investigate the topology

of the resultant network among different edge types within adaptive
networks over a spectrum of network configurations and r values.
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Fig. 3. The f, is investigated as a function of r ranging from 0 to 1.0 for both adaptive and static networks. It is explored how f, varies with r under a consistent
initial network structure. Essentially, the initial topological structure of the adaptive network mirrors that of the static network, yet the adaptive network undergoes experiences
co-evolution according to the pre-defined adaptive rules. Significant variability in f. between different r values and network topologies is observed, with distinct trends emerging
at lower and higher r values, which highlights the enhanced adaptability of dynamic networks to foster cooperation under varying environmental constraints compared to rigid
static networks.
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Fig. 4. The proportions of C-C, C-D, and D-D edge types vary across different networks and r values. The upper row of the network structures depicts RG for all cases
across various r values: r = 0.2 (a), 0.4 (b), and 0.6 (c). Consequently, the lower row applies WS with the same values for r as the upper row: r = 0.2 (d), 0.4 (e), and 0.6 (f).
The solid lines represent an average degree of the network of k =4, while the dashed lines represent k = 10. Blue, orange, and red represent the C-C, C-D, and D-D edge types,
respectively. Upon contrasting the two sets of sub-figures, the initial network structures exhibit an insignificant influence on edge types. The first column indicates that, under a
scenario dominated by cooperation, the C-C type edges increase rapidly, while the proportion of D-D type edges decreases faster than that of C-D type edges. Results from the
second column suggest that when the ratios of cooperation and defection are similar, the proportion of C-D type edges remains almost constant, with a slight increase in C-C
edges and a corresponding decrease in D-D edges. The third column implies that, under a predominance of defectors, there is an increase in the proportion of D-D edges, which
become nearly equal to C-D type edges, and noticeably, networks with k =4 and k = 10 exhibit significant differences.

Firstly, our focus lies on comprehending the evolution of connection dominance of cooperative behaviors is evident when r = 0.2, consistent
types, specifically cooperator—cooperator (C-C), cooperator—defector with previous experimental findings indicating that the proportion
(C-D), and defector—defector (D-D) connections. As depicted in Fig. 4, of cooperators remains approximately 0.81 in various configurations.
we continue our investigation with RG and WS of average degrees 4 and Therefore, at r = 0.2, the initial network structure we explore here
10, respectively, selecting r values of 0.2, 0.4, and 0.6 to fully observe does not have a significant impact on the proportions of different edges.
scenarios where cooperators dominate, defectors prevail, and the ratio Specifically, there is a notable surge in the prevalence of C-C edges,
of cooperators to defectors is approximate. which accounts for approximately 0.69 of all edges, while both D-D

All results illustrate the proportions of the C-C, C-D, and D-D edge and C-D edges decline, with the proportion of D-D decreasing more
types after 300 iterations, averaging values over 10 independent runs, rapidly to around 0.03 and the C-D diminishing to approximately 0.30.
and ensuring that the network strategies have reached a stationary In the case of RG and WS with k = 4 and r = 04, the fraction
state. Across all parameters and network structures under scrutiny, we of cooperation is approximately 0.50, while it is approximately 0.57
find that the dynamic proportions of these edge types reach a stationary for k = 10. It is observable that in networks with a higher number
state more rapidly than the evolution of strategies. In particular, a of cooperators (k = 10), the rate of increase in C-C edges and the
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Fig. 5. Degree distributions in stationary RG with varying average degrees of connectivity. It displays the degree distributions for nodes in stationary state networks,
differentiated by the average degrees of 4 and 10 within RG. Specifically, (a) presents a network with an initial average degree of 4 and a cooperation rate of 0.2, while (b)
presents a network with an initial average degree of 10 and the same cooperation rate. Moving to (c) and (d), the cooperation rate remains constant at 0.4, but the initial average
degree changes to 4 and 10, respectively. Similarly, (e) and (f) maintain a cooperation rate of 0.6, with initial average degrees of 4 and 10, respectively. Each panel delineates
the degree distributions for cooperators (blue) and defectors (red), along with all agents (gray). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

rate of decrease in D-D edges are higher, and the disparity between
stabilized C-C and D-D edges is more pronounced compared to the
k = 4 networks. Meanwhile, the C-D edges remain nearly constant at
around 0.5 for r = 0.2 in both network configurations. It suggests that
the proportion changes of the three types of edges mainly depend on
f. and are scarcely influenced by the initial network structures of RG
or WS.

At r = 0.6, the disparities between the RG and WS networks are
minimal, but the gaps between networks with k = 4 and k = 10 are
substantial, with stabilized cooperation proportions of 0.24 and 0.35,
respectively. Due to the relatively higher proportion of cooperators in
the k = 10 network, C-D edges persist at 0.5, while the proportion
of D-D edges surpasses that of C-C edges. Particularly for the sparser
networks (k = 4), C-D edges decrease to levels close to D-D edges, with
a corresponding reduction in the proportion of C-C edges to around
0.09. The dynamic interplay of edge types under different conditions
underscores the adaptive network’s capability to reconfigure itself in

response to evolving payoff landscapes, highlighting the importance of
network topology in fostering or impeding cooperation.

Although we investigate the different types of edges between coop-
erators and defectors, the proportions of them are heavily influenced by
the number of cooperators and defectors in the system. Consequently,
we cannot directly infer the distribution patterns of cooperators and
defectors based solely on these edge proportions. In addition, the series
of experiments described above collectively indicate that various initial
network types exert minimal influence on the evolutionary outcome of
the adaptive final network, and this conclusion is further supported by
our examination of degree distributions of simulations reaching station-
ary states in Fig. 5. Therefore, we present the degree distributions of all
nodes in stationary state networks only for RG with k values of 4 and
10.

In the range of parameters under investigation, regardless of
whether k equals 4 or 10, the degree distribution of all agents within
the network exhibits a normal distribution. Evidently, cooperators
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Fig. 6. The average clustering coefficients and the average shortest path length of networks under different r. Panel (a) displays the variation in average clustering
coefficients for initial networks modeled as RG and WS networks with mean degrees k = 4 and k = 10. Panel (b) illustrates the corresponding average shortest path lengths
across these network models. It is evident from the results that the stationary state values of both the average clustering coefficients and the average shortest path lengths are
predominantly influenced by the networks’ average degree, while changes in the parameter » do not significantly affect these metrics.

possess a higher degree compared to defectors. When r = 02, a
condition characterized by a higher proportion of cooperators, the
degree distributions between cooperators and defectors are relatively
similar. However, with an increase in r to 0.6, the disparity in degree
distributions between cooperators and defectors becomes more pro-
nounced, suggesting that in environments where defectors dominate,
cooperators tend to form tighter clusters of cooperation to resist de-
fector infiltration, while defectors tend to remain relatively isolated.
The observation underscores that, under high values r, which indicate
low cooperative tendencies, cooperators are particularly inclined to
establish extensive partnerships. Furthermore, the influence of different
initial network configurations on the eventually evolved network is
negligible, indicating a strong self-organizing and adaptive capability
of networks, which tend toward stable cooperative structures under
diverse cooperation levels. The adaptability is particularly evident in
the changes observed in the degree distributions of cooperators and
defectors with varying r, compared to traditional static RG networks
where all nodes maintain the same degree. It also reflects the strong
adaptability of cooperators when facing numerous defectors, evident
in its structural and connectivity patterns.

The network clustering coefficients and the shortest path length
serve as crucial metrics to quantify the degree of clustering or the struc-
ture of the community present within the networks. To examine the
variability of the average clustering coefficient and the average shortest
path length in adaptive networks under stationary state conditions,
we investigate the dynamics illustrated in Fig. 6. By systematically
varying the parameter r, we emulate various levels of cooperation that
shape node interactions and examine the influence of initial states on
the clustering coefficients after the network reaches a stationary state.
However, under certain parameter conditions, the network probably
evolves such that some nodes become isolated, resulting in a discon-
nected network. In these cases, we calculate the two metrics mentioned
above for the largest connected component of the network.

Interestingly, different values of r result in different levels of co-
operation in the stationary state. However, these variations do not
exhibit a significant trend in altering the network’s average clustering
coefficient or average shortest path length. Fig. 6 (a) illustrates that the
average degree of the four previously studied network structures plays
a decisive role in the stationary state outcomes of the average clustering
coefficient of the network, while the differences in the initial network
structures have minimal impact. Despite the initial average degrees of
4 and 10 in RG have average clustering coefficients of 0.0008 and
0.004, respectively, and in WS that have average clustering coefficients
of 0.3713 and 0.4871, all network structures, except RG with k = 10,
evolve toward smaller clustering coefficients.

Fig. 6 (b) shows that, regardless of the value of r for both k = 4
and k£ = 10 in WS and RG, the evolution of the system has minimal
impact on the average shortest path length of the network and lacks a

discernible pattern. Initially, RG with average degrees of 4 and 10 has
average shortest path lengths of 6.26 and 3.59, respectively, while WS
has average shortest path lengths of 9.85 and 4.94. Across the network
structures explored in this study, the networks generally evolve toward
smaller average shortest path lengths, indicating that the networks
become more efficient in terms of communication and connectivity as
they evolve, despite the initial structural differences.

In summary, networks with an average degree of 10 exhibits signifi-
cantly higher clustering coefficients and shorter path lengths compared
to those with an average degree of 4. It can be explained by the fact that
a higher average degree provides more connections per node, which
enhances the likelihood of forming tightly-knit clusters and reduces the
number of steps required to traverse the network. Thus, networks with
higher average degrees tend to become more clustered and efficient
over time, reflecting the dynamic interplay between degree distribution
and network topology.

4. Conclusions and future research

In this study, we propose and investigate an adaptive network
based on the snowdrift game, aimed at gaining deeper insights into the
evolution of cooperative behavior in dynamic networks driven by the
maximization of payoff by agents and its influence on the surrounding
neighborhood structure and the entire network. Building upon this, we
introduce the concept of the agent’s disassociation tendency toward its
neighbors based on payoffs, defining the probability of edges between
neighbors no longer being connected, while stipulating that agents
whose edges are cut can randomly select a replacement non-neighbor
agent.

Through experimental simulations, we analyze the effects of differ-
ent initial network configurations (RG and WS with average degrees
of 4 and 10), as well as the cost-benefit ratio (r), on the evolution
of cooperative behavior, revealing the impact of dynamic adaptability
of the network on cooperative behavior. Initially, we observe that
compared to traditional static networks, adaptive networks are more
likely to reach states of pure cooperation or pure defection at extreme
values of r. We find that networks with higher average degrees (k = 10)
exhibit relatively higher levels of cooperation compared to those with
lower degrees (k = 4). Additionally, both of them promote coopera-
tive behavior across a wider range of r values compared to statically
configured networks of the same type. Understanding the structural
distribution of cooperators and defectors within networks is crucial to
comprehending the dynamics of cooperation and defection in social
systems. We also investigate the intricate interplay between cooper-
ative and non-cooperative behaviors through an analysis of network
structures.

A detailed analysis is conducted on the types of network connec-
tions, specifically C-C, C-D, and D-D connections in adaptive networks.
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We show that the evolution of edges reaches a stationary state more
rapidly than the evolution of strategies. Moreover, we can infer that
the distribution ratio of edges almost directly determines the final
proportion of cooperators in the network. In addition, the distributions
of these connection types were analyzed in different network configu-
rations and r values. In systems with a higher prevalence of defectors,
cooperators demonstrate a marked propensity to establish extensive
partnerships to counteract the incursion of defectors. Interestingly,
the average clustering coefficient and the shortest path length of the
network do not exhibit a clear pattern of variation with changes in
cooperation levels. Instead, it is primarily influenced by the initial
structure of the network.

Further research can explore the implications of more diverse net-
work configurations and introduce modifications to adaptive rules to
better reflect real-world complexity, as done in previous evolutionary
games fed with real data [50]. Additionally, in terms of strategy up-
dating, we assume that fully rational individuals will only imitate the
strategies of neighbors who achieve higher payoffs. However, there
are other rules for updating the strategy that warrant a thorough
investigation [51]. Finally, the current model posits that agents select
new neighbors randomly. Exploring more complex rules for neighbor
selection could enrich the model’s applicability to understanding hu-
man social behaviors. The potential to apply this adaptive network
model to other types of games and social settings, such as the gener-
alized pairwise game or asymmetric games [52], opens new avenues
for exploring the intricate dynamics of cooperation within complex
networks.
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