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Abstract—In the post-pandemic era, new variants of COVID-
19 continue to emerge and spread within communities across
various regions, underscoring the importance of epidemic con-
trol and prevention. However, previous research has largely
overlooked migration behaviors and individual awareness. In
this paper, we propose a Susceptible-Exposed-Asymptomatic-
Symptomatic-Recovered (SEI?I°R) model with a self-protection
mechanism that simulates the impact of awareness in the
metapopulation network. The proposed model incorporates an-
alytical expressions for each state, derived from human mobility
patterns using the microscopic Markov chain approach (MMCA).
Simulation results highlight the significant influence of initial
mobility rates and population size on disease transmission.
We present an example of a real transportation network for
metapopulations to illustrate its effectiveness in depicting epi-
demic dynamics.

Index Terms—SEIR model, Metapopulation network, Mobility,
Microscopic Markov chain

I. INTRODUCTION

From the outbreak of SARS in 2003 to the emergence of the
COVID-19 pandemic at the end of 2019, which rapidly swept
through multiple countries and regions worldwide within a
very short period, the pandemics have attracted significant
public interest and drawn great attention from scientific re-
searchers. The implementation of epidemic prevention mea-
sures by national governments and the improvement of in-
dividual awareness have made indispensable contributions to
restraining the spread of viruses. Since the lifting of the
comprehensive zero-COVID policy, outbreaks of diseases like
HINT influenza [1] and more contagious variants of COVID-
19, such as Delta (B.1.617.2) and Omicron (B.1.1.529), persist
in localized urban or community setting [2]. Consequently,
numerous researchers have employed various mathematical
models to analyze these outbreaks, aiming to gain deeper in-
sights into the transmission patterns of emerging diseases and
provide evidence for assessing epidemic trends and prevention
strategies.

The classical SIR and SIS compartmental models have
been extensively used to describe the spread of infectious
diseases, followed by a series of refined models based on these
foundations [3]-[7]. Additionally, the epidemic models were
applied and analyzed in various network structures, such as
scale-free networks [8], temporal networks [9] and multiplex
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networks [10]. Among them, the SEIR model, which includes
an incubation period, has been widely adopted for its ability to
better explain the latent phase after infection and its advantage
in considering interventions like movement restrictions or
isolation measures imposed on infected individuals [11], [12].
Nevertheless, the structural characteristics of social networks
(e.g., clustering effects or node degree distributions) are often
overlooked in traditional SEIR models, which also categorize
all infected individuals into a single class, despite the fact that
different diseases or stages of the same disease can lead to
varying degrees of severity among patients [13].

To better understand the micro-scale transmission processes
of diseases within local communities and the long-distance
spread of diseases caused by human mobility, Anderson and
May first applied the concept of biological metapopulations
to the SIR model in the field of epidemiological modeling,
providing an effective modeling framework for the study of
epidemic transmission from a spatial dissemination perspective
[14]. Since then, an increasing number of scholars have been
drawn to the research on disease modeling within metapopula-
tion networks [15]-[17]. Once the metapopulation models are
constructed, researchers utilize epidemiological parameters to
track and forecast the spread of epidemics. Qi et al. studied
epidemic transmission on different population network struc-
tures by considering comprehensive interventions and initial
mobility rates [18], while Yang utilized discrete-time Markov
chain methods to investigate infectious disease transmission
with periodic population mobility within communities [19].
Studying the patterns of disease transmission during recurrent
mobility contributes to a deeper understanding of epidemic
propagation mechanisms, enabling the formulation of more
effective immunization strategies. However, the uncertainty in
human mobility patterns and awareness poses challenges to
the study of epidemic dynamics.

Building on the discussions above, in this work we present
an enhanced SEIR model in the metapopulation network,
named the Susceptible-Exposed-Asymptomatic-Symptomatic-
Recovered (SEI*I°R) model which divides the infected state
into asymptomatic and symptomatic states based on the clin-
ical symptoms exhibited by individuals. In order to take citi-
zens’ awareness of prevention into consideration, we introduce
the self-protection mechanism as a changeable part related to
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the infected state mentioned above. In the proposed model, an-
alytical expressions for each state are formalized with human
mobility patterns by utilizing the microscopic Markov chain
approach (MMCA). Finally, a real transportation network for
metapopulations is presented to illustrate its effectiveness in
depicting epidemic dynamics.

The rest of the paper is presented as follows: We first
introduce the proposed SEI*I’R compartmental model and
the detailed formulation of each state in the metapopulation
framework in Section II. Section III shows the numerical
results and conclusions of three experiments, and in Section IV
we conclude the findings and discuss the prevention measures
and isolation interventions when facing future epidemics.

II. MODEL DESCRIPTION
A. Compartmental dynamics with SEI*IPR model

The traditional SEIR model divides people during a disease
infection process into four parts: Susceptible (S), Exposed (E),
Infected (I), and Recovered (R). Specifically, infected individ-
uals effectively contact the susceptibles at a transmission rate
A, turning them into exposed individuals. Exposed individuals
then progress to the infected state after an average latent pe-
riod, with a transmission rate of 3. Infected individuals recover
at a recovery rate x4 and become immune to the virus. However,
for the same type of infectious disease or different strains
of the same infectious disease, individuals may experience
milder symptoms due to continuously increasing resistance.
For example, symptoms tend to be milder and recovery time
shorter when individuals are reinfected with variants of the
COVID-19 virus. Therefore, we divide the infected state into
Asymptomatic Infectious state (I*), where individuals become
asymptomatic or show mild symptoms, and Symptomatic
Infectious state (I°), where individuals exhibit typical clinical
symptoms. Once the incubation period ends, two paths emerge,
as shown in Figure 1.

po Ay
o
B(1 — 6) H2

Fig. 1. State transition process of the disease compartment model. The
S-state individuals transform into the E-state individuals with probability A,
and 6 represents the conversion rate from exposed state to asymptomatic
infectious state, while 121 and po denote the recovery rates of asymptomatic
and symptomatic infectious individuals, respectively.

B. Theoretical analysis with mobility patterns

The metapopulation network comprises /N nodes, with each
node i containing n,; individuals. In this scenario, each node
in the metapopulation network represents a subpopulation or
patch with varying population sizes. Infection occurs within
each patch under the well-mixing approximation, and individu-
als can move between patches. The patches refer to small local
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sites usually(e.g., classrooms, dormitories, or workplaces, de-
pending on the living environment) where individuals are able
to contact each other with the same probability. The weights
between edges of different nodes represent the probability of
an agent moving to a specific patch, called mobility probability
[20]. Our metapopulation model is constructed by utilizing
the microscopic Markov chain approach proposed for the first
time in disease transmission dynamics modeling [21], which
provides a better description of epidemic spreading at the node
level. Unlike traditional MMCA, we use p}*(t) to represent the
proportion of individuals in state m at time ¢, with location at
patch 7. The other explanation says that it is the probability
of individuals staying at a specific patch with the given state.

We assume contacts among individuals within each commu-
nity are uniform, meaning pathogens infect healthy individuals
in the community at the same probability. The next part of
the structured metapopulation network concerns the mobility
patterns among individuals. Considering the impact of self-
protection awareness on mobility, individuals tend to move
towards communities with either a lower prevalence of disease
or where the symptoms experienced after infection are mild.
Therefore, we define a variable ¢;(t) to represent the propor-
tion of individuals with symptomatic infectious states among
the total infected population in patch ¢ at time ¢, expressed as

ey

where p!(t) donates the sum of the density of individuals in
Asymptomatic Infectious state(I*) and Symptomatic Infectious
state(I®).

Additionally, we define a function f that represents the
tendency of individuals moving to a specific patch with a range
from O to 1. The greater the willingness of individuals to enter
a certain area, the higher the corresponding function value will
be. Thus, the self-protection mechanism f reads

f= e—¥i(t) )

Each agent can move to neighbor patches, thereby influ-
encing the spread of the disease. The movement of agents is
depicted within a metapopulation network, and the reaction-
diffusion process based on individual mobility patterns is
illustrated in Figure 2. At each time step, the migration patterns
between distinct patches are dictated by the mobility matrix
C, where Cj; denotes the probability an individual leaves the
current location ¢ with probability p and occupies any other
patch connected. We have

_ Wy
-~ <N 1
21:1 Wi

where the probability of selecting patch j is proportional to
the corresponding entry of the adjacency matrix W;;, in con-
junction with the function f, which represents the likelihood
of individuals moving to patch j.

Cij e wi(D) (3)
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Fig. 2. Diagrammatic representation of one single time step within the reaction-diffusion system in a metapopulation network. The illustration is
composed of N = 3 patches based on SEI*I*R model, in which each color of a node represents a single state. At each time step, the individuals either
remain at their residence or decide to move to neighbor patches according to the mobility matrix C. Then they contact with others under the well-mixing
approximation and undergo reactions within the current patch. At last, individuals return to the residence or move to another patch and start another round

of the infection.

Here, combined with the proposed epidemic model, the
microscopic Markov chain equations for the evolution of each
state over time are given by

pl(t+1) = (1 —TL(t) pj (¢)

pE(t+1) = pf (OIL;(t) + (1 — B)pP(t)

pl(t+1) = BOpL(t) + (1 — pa)pl (1) @
pl(t+1) =B —0)pf () + (1 — p2)p! (t)

it +1) = pff(t) + mpl (1) + p2p] (1)
The susceptible population in patch ¢ is infected by contact

with asymptomatic and symptomatic carriers, with a total
infection rate of II;(¢), given by

N
(1=p)Pi(t)+p Y _ Ci;Pi(t) )
j=1

I (t) =

The first side of Eq. (5) represents the probability of
individuals staying in patch ¢ and getting infected, while the
second term signifies contagions occurring in any surrounding
area. P;(t) denotes the likelihood of catching the disease
within patch ¢, thus expressed as

H L= Mof (8) = Bpj ()] (6)

where n;_,; donates the total number of individuals moving
from patch j to patch i:

nji = 0ij (1 — p)n; + pCijn; (7)
where d;; = 1 when ¢ = j and d;; = 0 otherwise.

III. SIMULATION RESULTS

In this section, we conduct numerical simulations in the
metapopulation network with N = 20 patches. The population
size of each patch follows a random distribution ranging
from 100 to 500 individuals. Thus, we set up a directed
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complete graph as the metapopulation network, where the
weights of edges are randomized. To simulate the initial stage
of disease transmission, we assume that the proportion of
susceptible individuals in the entire metapopulation network
is p¥(0) = 0.98, while the exposed density is p¥(0) = 0.01
and the sum of infected density is p’(0) = 0.01. To avoid
errors caused by the randomness of experiments, we derive the
mean values of each state over 100 times in the Monte Carlo
simulations. The parameter values based on the real epidemic
data are presented in Table I.

TABLE 1
PARAMETER VALUES OF THE EPIDEMIC MODEL
Parameter  p A 5 0 w1 M2
Value 0.6 0.001 02 07 04 02

A. Comparison of mentioned models

In order to clarify the influence of individual protective con-
sciousness on epidemic dissemination within a metapopulation
network, we compare the epidemic trends of susceptibility
density p° and recovery density p* between our proposed
model with the self-protection mechanism and the traditional
model over time steps, as depicted in Figure 3. The solid line
represents the trend in population density for our proposed
model, while the dotted line represents that of the traditional
SEIR model. By comparing these two models, we find that the
density of susceptible individuals in our model decreases at a
slower rate compared to the traditional model. Additionally,
the increase in the density of recovered individuals is also more
gradual, and the time to reach the epidemic equilibrium point
is later. This phenomenon suggests that if people move freely
without protective awareness, the epidemic could potentially
lead to more intense outbreaks between communities, infecting
a larger portion of the population within a shorter period and
significantly impacting local public healthcare resources.

Figure 4 illustrates the variation in the infection probability
II changing with time in the same metapopulation network. It
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Fig. 3. The epidemic state densities of susceptible proportion and

recovered proportion change over time. The green curve denotes the
proportion of susceptible individuals, and the grey one denotes the proportion
of recovered individuals with a self-protection mechanism in our model. By
comparison, the dashed lines indicate the change in the proportion of the
corresponding states in the traditional SEIR model in 50 time steps.

can be seen that the infection rate of the SEIR model ascends
and reaches its peak more rapidly, indicating the fact that
the population within the entire community becomes infected
at a faster pace. Subsequently, the infection rate declines
until it reaches zero. Through a series of comparisons, the
results better underscore the crucial role of public awareness
in controlling the spread of the epidemic.
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Fig. 4. The epidemic state densities of the infection probability between
different models in 50 time steps. The parameter II denotes the probability
of individuals in a patch catching the disease, which reflects the speed of the
epidemic transmission. The blue circle denotes the infection probability of the
traditional SEIR model, while the red circle denotes the infection probability
of our proposed model with the self-protection mechanism.

B. Analysis of peak proportion densities

The peak infection density within patches serves as an
indicator of the severity of an epidemic to a certain extent. In
addition, the final recovery density represents the proportion
of the population that is ultimately affected by the disease,
thereby reflecting the extent of its transmission to some degree.
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We investigate the impact of recurrent mobility patterns by
varying the number of patches and population sizes. Figure
5 demonstrates the changes in peak infection density with
increasing mobility rates from O to 1 under different population
sizes. It has been demonstrated that a larger population size,
coupled with an increased mobility rate, positively influences
the spread of the epidemic.
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Fig. 5. The comparison of the peak infection densities with varying
mobility rates for different population sizes. The simulations for each curve
are performed using N=20 patches across an average of 100 experiments. As
the mobility rate p increases, and the peak infection density is represented by
different shapes for various population sizes, where the blue circle corresponds
to a population size of 100, the green triangle to a population size of 200,
and the red square to a population size of 500.

Figure 6 illustrates the relationship between peak infection
density and mobility rates across various patch scales. It
indicates that holding the number of patches and population
size constant, the peak infection density of a single curve is
significantly influenced by the mobility rate. In other words,
as the mobility rate increases, the peak infection density
on a single curve also rises. Furthermore, we have deduced
that there is a positive correlation between the number of
communities, population size, and the peak infection density
as the mobility rate increases, which means that restrict-
ing unnecessary movement of people, implementing effective
quarantine measures, and monitoring epidemic data in real-
time can suppress the spread of the epidemic.

Subsequently, in Figure 7 we explore how mobility prob-
abilities influence the final recovered density p’* (00). Ex-
periment results show that disease can hardly spread at the
beginning of the epidemic. As time goes by, the proportion
of recovered individuals increases gradually. We get that in
small-scale towns, the higher the mobility rate, the faster the
spread of diseases.

C. Epidemic trends in a real transportation network

Finally, we analyze a real urban transportation system, the
city of Sioux Falls (America). We collect population distribu-
tion data for 5.9 x 10? residents, divided into 24 areas. The net-
work is established by linking these 24 subpopulations through
traffic arteries, where the traffic flow between roads determines
the weights of each edge. We conduct numerical simulations
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Fig. 6. The comparison of the peak infection densities with varying
mobility rates for different numbers of patches. The population size for
each curve follows a random distribution ranging from 100 to 500 individuals.
As the mobility rate p increases, the peak infection density is represented by
different shapes for the various number of patches, where the blue circle
donates the peak infection density with NV = 10, the green triangle with NV =
20, the yellow triangle with N = 20, and the red inverted triangle with N =
50.
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Fig. 7. The final recovered density changes over time under different
mobility rates. The population size for each curve follows a random distri-
bution ranging from 100 to 150 individuals with a total of 50 patches. As time
evolves, recovered densities increase and then remain unchanged. The final
recovered density is represented by different shapes for the various number of
mobility rates, where the blue circle donates the final recovered density with
p = 0.3, the purple triangle with p = 0.6, and the red square with p = 0.9.

of reaction-diffusion dynamics by computing Markov Eq. (4).
Figure 7 displays the evolving trend of population density in
different infection stages over 50-time steps. As illustrated in
the Figure, the percentage of individuals in the susceptible (S)
state drops sharply as the disease spreads. With the progression
of time, the fraction of S-state individuals diminishes further
until it approaches zero, while the proportion of those in the
recovered (R) state grows until nearly all individuals have
reached the R-state. Simulation results reveal the trend of
disease transmission under a realistic community structure,
with comprehensive and sufficient contact among people. It is
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worth noting that there is a point of intersection between the
density curves of symptomatic and asymptomatic individuals
at a specific time step. This occurs because we assume that
individuals in the asymptomatic state experience a shorter
recovery period compared to those in the symptomatic state,
leading to the stabilization of the population density in the
symptomatic state ultimately.
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Fig. 8. The evolution of the fractions of population in different infection
stages in Sioux Falls. The metapopulation network of the city of Sioux Falls
(composed of 24 communities) where links denote transportation flows be-
tween pairs of subpopulations. Each curve of the figure obtained by Markovian
equations respectively shows the trend of the proportion of individuals with
the SEI?I°R model.

IV. CONCLUSION

In this paper, we propose and elaborate a new metapop-
ulation SEI*IPR epidemic model to study the influence of
human mobility patterns and individual protective awareness
on disease transmission in small-scale communities. Based on
the microscopic Markov chain approach, we get the theoretical
formalism of each state under the proposed model. Further-
more, the simulations we set up show the initial mobility
rate, awareness dissemination between individuals, the size of
communities or, any other important factors that are closely
associated with the epidemic spreading. At last, we emphasize
the feasibility and effectiveness of the MMCA equations in
forecasting the trend of infection in a real case study in the
city of Sioux Falls. The proposed model can provide valuable
insights into the epidemic dynamics and the role of individual
protective awareness in controlling the spread of the epidemic.
The results suggest that governments or regions aiming at
overcoming localized outbreaks put better prevention strategies
such as blocking personnel contact, implementing effective
isolation measures, and strengthening public control education.

Despite the metapopulation framework we propose achieves
definite advantages in epidemic modeling, it still possesses
many limitations. For example, in order to make the model
more simplified, we assume that the mobility rate of individu-
als remains the same for each experiment. However, in reality,
the mobility rate varies across different regions and individuals
and can be influenced by various factors such as age, gender,
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and geographic location. Moreover, we expect to enhance our
study further by considering the effect of individual behavioral
factors such as social distancing, mask-wearing, and hygiene.
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